Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 87(5): 1187-1201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36919742

RESUMO

Inner coastal wetland ecosystems are generally eutrophic and are often exposed to both salinity stress and Escherichia coli pollution. However, the effects of these stressors on nutrient-cycling and microbial communities are under-researched. Here, we established a vegetated wetland ecosystem in a saline environment to understand the effects of E. coli pollution on nutrient removal and benthic microorganisms. The results show that E. coli significantly inhibited nutrient removal, especially total nitrogen (TN) and ammonium (78.89-84.98 and 3.45-44.65% were removed from the non-E. coli-treated and the E. coli-treated water, respectively). Compared with non-vegetated systems, archaeal community variations at both compositional and phylogenetic levels were weakened in vegetated systems (p < 0.05). Among all the environmental factors, the ratios of PO43--P to total phosphorus and NO3--N to TN contributed the most to archaeal and bacterial community structural variations, respectively. E. coli pollution affected archaeal community succession more than bacteria (p < 0.05). E. coli also weakened the trophic transferring efficiencies between Cyanobacteria and Myxobacteria (p < 0.05). Metabolically, E. coli inhibited bacterial genetic metabolic pathways but made human infection more likely (p < 0.05). Our findings provide new insights into aquatic ecological conservation and environmental management.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Salinidade , Filogenia , Bactérias/genética , Archaea/genética , Escherichia coli/genética , Nutrientes , Nitrogênio
2.
Environ Pollut ; 314: 120266, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162562

RESUMO

The presence of Per-, Poly-fluoroalkyl substances (PFASs) in aquatic ecosystems has drawn broad concerns in the scientific community due to their biological toxicity. However, little has been explored regarding PFASs' removal in phytoplankton-dominated environments. This study aimed to create a simulated bacteria-algae symbiotic ecosystem to observe the potential transportation of PFASs. Mass distributions showed that sand (63-2000 µm), silt & clay (0-63 µm), the phycosphere (>3 µm plankton), and the free-living biosphere (0.22-3 µm plankton) contained 19.00, 7.78, 5.73 and 2.75% PFASs in their total mass, respectively. Significant correlations were observed between carbon chain lengths and removal rates (R2 = 0.822, p < 10-4). Structural equation models revealed potential PFAS transportation pathways, such as water-phycosphere- free-living biosphere-sand-silt&clay, and water-sand-silt&clay (p < 0.05). The presence of PFASs decreased the bacterial density but increased algal density (p < 0.01) in the planktonic environment, and PFASs with longer carbon chain lengths showed a stronger enhancement in microbial community successions (p < 0.05). In algal metabolisms, chlorophyll-a and carotenoids were the key pigments that resisted reactive oxygen species caused by PFASs. PFBA (perfluorobutyric acid) (10.38-14.68%) and PFTeDA (perfluorotetradecanoic acid) (10.33-15.96%) affected bacterial metabolisms in phycosphere the most, while in the free-living biosphere was most effected by PFPeA (perfluorovaleric acid) (13.21-13.99%) and PFDoA (perfluorododecanoic acid) (10.04-10.50%). The results of this study provide new guidance measures for PFAS removal and management in aquatic environments.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Ecossistema , Argila , Areia , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plantas , Clorofila A , Bactérias , Carbono , Água , Carotenoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA