Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 438(1): 114047, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631546

RESUMO

BACKGROUND: Programmed death ligand-1(PD-L1) has been postulated to play a crucial role in the regulation of barrier functions of the vascular endothelium, yet how this novel molecule mediates dysfunction in endothelial cells (ECs) during acute lung injury (ALI) remains largely unknown. METHODS: PD-L1 siRNA and plasmids were synthesized and applied respectively to down- or up-regulate PD-L1 expression in human lung microvascular endothelial cells (HMVECs). RNA sequencing was used to explore the differentially expressed genes following PD-L1 overexpression. The expression levels of tight junction proteins (ZO-1 and occludin) and the signaling pathways of NLRP-3/caspase-1/pyroptosis were analyzed. A mouse model of indirect ALI was established through hemorrhagic shock (HEM) followed by cecal ligation and puncture (CLP), enabling further investigation into the effects of intravenous delivery of PD-L1 siRNA. RESULTS: A total of 1502 differentially expressed genes were identified, comprising 532 down-regulated and 970 up-regulated genes in ECs exhibiting PD-L1overexpression. Enrichment of PD-L1-correlated genes were observed in the NOD-like receptor signaling pathway and the TNF signaling pathway. Western blot assays confirmed that PD-L1 overexpression elevated the expression of NLRP3, cleaved-caspase-1, ASC and GSDMD, and concurrently diminished the expression of ZO-1 and occludin. This overexpression also enhanced mitochondrial oxidative phosphorylation and mitochondrial reactive oxygen species (mtROS) production. Interestingly, mitigating mitochondrial dysfunction with mitoQ partially countered the adverse effects of PD-L1 on the functionality of ECs. Furthermore, intravenous administration of PD-L1 siRNA effectively inhibited the activation of the NLRP3 inflammasome and pyroptosis in pulmonary ECs, subsequently ameliorating lung injury in HEM/CLP mice. CONCLUSION: PD-L1-mediated activation of the inflammasome contributes significantly to the disruption of tight junction and induction of pyroptosis in ECs, where oxidative stress associated with mitochondrial dysfunction serves as a pivotal mechanism underpinning these effects.


Assuntos
Antígeno B7-H1 , Caspase 1 , Endotélio Vascular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Caspase 1/metabolismo , Caspase 1/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo
2.
Cancer Cell Int ; 24(1): 173, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760774

RESUMO

BACKGROUND: Drug resistance poses a significant challenge in cancer treatment, particularly as a leading cause of therapy failure. Cisplatin, the primary drug for lung adenocarcinoma (LUAD) chemotherapy, shows effective treatment outcomes. However, the development of resistance against cisplatin is a major obstacle. Therefore, identifying genes resistant to cisplatin and adopting personalized treatment could significantly improve patient outcomes. METHODS: By examining transcriptome data of cisplatin-resistant LUAD cells from the GEO database, 181 genes associated with cisplatin resistance were identified. Using univariate regression analysis, random forest and multivariate regression analyses, two prognostic genes, E2F7 and FAM83A, were identified. This study developed a prognostic model utilizing E2F7 and FAM83A as key indicators. The Cell Counting Kit 8 assay, Transwell assay, and flow cytometry were used to detect the effects of E2F7 on the proliferation, migration, invasiveness and apoptosis of A549/PC9 cells. Western blotting was used to determine the effect of E2F7 on AKT/mTOR signaling pathway. RESULTS: This study has pinpointed two crucial genes associated with cisplatin resistance, E2F7 and FAM83A, and developed a comprehensive model to assist in the diagnosis, prognosis, and evaluation of relapse risk in LUAD. Analysis revealed that patients at higher risk, according to these genetic markers, had elevated levels of immune checkpoints (PD-L1 and PD-L2). The prognostic and diagnosis values of E2F7 and FAM83A were further confirmed in clinical data. Furthermore, inhibiting E2F7 in lung cancer cells markedly reduced their proliferation, migration, invasion, and increased apoptosis. In vivo experiments corroborated these findings, showing reduced tumor growth and lung metastasis upon E2F7 suppression in lung cancer models. CONCLUSION: Our study affirms the prognostic value of a model based on two DEGs, offering a reliable method for predicting the success of tumor immunotherapy in patients with LUAD. The diagnostic and predictive model based on these genes demonstrates excellent performance. In vitro, reducing E2F7 levels shows antitumor effects by blocking LUAD growth and progression. Further investigation into the molecular mechanisms has highlighted E2F7's effect on the AKT/mTOR signaling pathway, underscoring its therapeutic potential. In the era of personalized medicine, this DEG-based model promises to guide clinical practice.

3.
BMC Gastroenterol ; 23(1): 442, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102560

RESUMO

BACKGROUND: Anal fistula is a common benign anorectal disease that often requires surgical intervention for effective treatment. In recent years, preoperative colonoscopy as a diagnostic tool in patients with anal fistula has garnered increasing attention due to its potential clinical application value. By investigating underlying inflammatory bowel disease (IBD), polyps, and other abnormalities, preoperative colonoscopy can offer insights to refine surgical strategies and improve patient outcomes. METHODS: This retrospective study focused on 1796 patients with various benign anorectal diseases who underwent preoperative intestinal endoscopy and met surgical criteria within the preceding three years at the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine. Among these patients, 949 diagnosed with anal fistula comprised group A, while 847 patients without anal fistula were assigned to group B for comparison. The investigation encompassed an analysis of general patient information, endoscopic findings, polyp histopathology, distribution of bowel inflammation sites, and results of inflammatory bowel disease assessments between the two patient cohorts. A subgroup analysis was also conducted on 2275 anal fistula patients with no surgical contraindications. This subgroup was categorized into Group A (949 patients who underwent preoperative intestinal endoscopy) and Group C (1326 patients who did not undergo preoperative colonoscopy). The study compared the rates of detecting endoscopic lesions and IBD-related findings between the two subgroups. RESULTS: The study initially confirmed the comparability of general patient information between groups A and B. Notably, the abnormal detection rate in group A was significantly higher than in group B (P < 0.01). In terms of endoscopic findings, the anal fistula group (group A) exhibited higher rates of detecting bowel inflammation, inflammatory bowel disease, and polyps compared to the non-anal fistula group (group B) (P < 0.05). The distribution of inflammation locations indicated higher detection rates in the terminal ileum, ileocecal region, and ascending colon for group A compared to group B (P < 0.05). Although the incidence of IBD in group A was higher than in group B, this difference did not reach statistical significance (P > 0.05). Subsequently, the analysis of the subgroup (groups A and C) revealed a significant disparity in intestinal endoscopic detection rates (P < 0.01) and statistically significant differences in detecting IBD (P < 0.05) and Crohn's disease (P < 0.05) between the two anal fistula subgroups. CONCLUSIONS: The findings of this study underscore the substantial clinical value of preoperative colonoscopy in the comprehensive evaluation of patients with anal fistula. Preoperative colonoscopy aids in ruling out localized perianal lesions caused by underlying inflammatory bowel disease, thereby mitigating the likelihood of missed diagnoses and enhancing treatment outcomes. This research highlights the importance of incorporating preoperative colonoscopy as a valuable diagnostic tool in managing anal fistula patients.


Assuntos
Doenças Inflamatórias Intestinais , Fístula Retal , Humanos , Estudos Retrospectivos , Colonoscopia , Fístula Retal/diagnóstico , Fístula Retal/cirurgia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/cirurgia , Inflamação
4.
BMC Med Imaging ; 23(1): 191, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985972

RESUMO

OBJECTIVE: There are no specific magnetic resonance imaging (MRI) features that distinguish pilocytic astrocytoma (PA) from adamantinomatous craniopharyngioma (ACP). In this study we compared the frequency of a novel enhancement characteristic on MRI (called the cut green pepper sign) in PA and ACP. METHODS: Consecutive patients with PA (n = 24) and ACP (n = 36) in the suprasellar region were included in the analysis. The cut green pepper sign was evaluated on post-contrast T1WI images independently by 2 neuroradiologists who were unaware of the pathologic diagnosis. The frequency of cut green pepper sign in PA and ACP was compared with Fisher's exact test. RESULTS: The cut green pepper sign was identified in 50% (12/24) of patients with PA, and 5.6% (2/36) with ACP. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the cut green pepper sign for diagnosing PA were 50%, 94.4%, 85.7% and 73.9%, respectively. There was a statistically significant difference in the age of patients with PA with and without the cut green pepper sign (12.3 ± 9.2 years vs. 5.5 ± 4.4 years, p = 0.035). CONCLUSION: The novel cut green pepper sign can help distinguish suprasellar PA from ACP on MRI.


Assuntos
Astrocitoma , Capsicum , Craniofaringioma , Neoplasias Hipofisárias , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Craniofaringioma/diagnóstico por imagem , Craniofaringioma/patologia , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/métodos , Astrocitoma/diagnóstico por imagem , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/patologia
5.
J Tissue Viability ; 31(1): 180-189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34538555

RESUMO

AIM OF THE STUDY: The aim of the study was to fabricate collagen-based composite dressings, evaluate the efficiency for wound healing and reveal the mechanism of promoting wound healing. MATERIALS AND METHODS: An innovative bi-layered composite wound dressing was developed using two marine biomacromolecules (collagen and chitosan). Full-thickness skin defect model was performed to evaluate the wound healing activity in vivo. The levels of inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin (IL-1, IL-6, IL-8) and growth factors like transforming growth factor beta (TGF-ß), vascular epidermal growth factor (VEGF) and basic fibroblast growth factor (bFGF) were quantified by ELISA assays. The total amount of collagen was quantified by hydroxyproline content. The proliferation and viability of fibroblast cells cultured on collagen sponges were determined by CCK-8 assay. RESULTS: The results of wound closure and histopathological analysis indicated that non-crosslinked collagen-based bi-layered composite dressing stimulated wound healing, accelerated re-epithelialization and accomplished wound healing within a time span of 28 days. The results of levels of inflammatory cytokines and growth factors showed that collagen-based composite dressings could reduce the inflammatory response and upregulate growth factors levels to accelerate the wound healing. The results of hydroxyproline content and CCK-8 assay indicated that collagen-based composite dressings could also promote collagen synthesis and fibroblasts viability and proliferation. CONCLUSION: The non-crosslinked collagen-based bi-layered composite dressing could be applied for an efficient and ideal wound dressing. Therefore, the findings provided the essential theoretical basis for the potential of collagen-based composite dressing applied in wound healing fields.


Assuntos
Bandagens , Cicatrização , Colágeno , Reepitelização , Pele
6.
Appl Environ Microbiol ; 87(12): e0011321, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837017

RESUMO

Glycolate is widely used in industry, especially in the fields of chemical cleaning, cosmetics, and medical materials, and has broad market prospects for the future. Recent advances in metabolic engineering and synthetic biology have significantly improved the titer and yield of glycolate. However, an expensive inducer was used in previous studies, which is not feasible for use in large-scale industrial fermentations. To constitutively biosynthesize glycolate, the expression level of each gene of the glycolate synthetic pathway needs to be systemically optimized. The main challenge of multigene pathway optimization is being able to select or screen the optimum strain from the randomly assembled library by an efficient high-throughput method within a short time. To overcome these challenges, we firstly established a glycolate-responsive biosensor and developed agar plate- and 48-well deep-well plate-scale high-throughput screening methods for the rapid screening of superior glycolate producers from a large library. A total of 22 gradient-strength promoter-5'-untranslated region (UTR) complexes were randomly cloned upstream of the genes of the glycolate synthetic pathway, generating a large random assembled library. After rounds of screening, the optimum strain was obtained from 6 × 105 transformants in a week, and it achieved a titer of 40.9 ± 3.7 g/liter glycolate in a 5-liter bioreactor. Furthermore, high expression levels of the enzymes YcdW and GltA were found to promote glycolate production, whereas AceA has no obvious impact on glycolate production. Overall, the glycolate biosensor-based pathway optimization strategy presented in this work provides a paradigm for other multigene pathway optimizations. IMPORTANCE The use of strong promoters, such as pTrc and T7, to control gene expression not only needs the addition of expensive inducers but also results in excessive protein expression that may result in unbalanced metabolic flux and the waste of cellular building blocks and energy. To balance the metabolic flux of glycolate biosynthesis, the expression level of each gene needs to be systemically optimized in a constitutive manner. However, the lack of high-throughput screening methods restricted glycolate synthetic pathway optimization. Our work firstly established a glycolate-response biosensor, and agar plate- and 48-well plate-scale high-throughput screening methods were then developed for the rapid screening of optimum pathways from a large library. Finally, we obtained a glycolate-producing strain with good biosynthetic performance, and the use of the expensive inducer isopropyl-ß-d-thiogalactopyranoside (IPTG) was avoided, which broadens our understanding of the mechanism of glycolate synthesis.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais , Escherichia coli/genética , Glicolatos/metabolismo , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Ensaios de Triagem em Larga Escala , Engenharia Metabólica , Plasmídeos , Regiões Promotoras Genéticas
7.
Mediators Inflamm ; 2021: 7858746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002536

RESUMO

We recently reported the differential circRNA expression patterns of the pulmonary macrophages in sepsis-induced acute respiratory distress syndrome (ARDS) mice model by microarray analysis. However, their function and hidden molecular mechanism in regulation of macrophage activation and inflammation remain poorly understood. In this study, we found that circN4bp1was overexpressed in PBMC and monocytes, and its expression levels were correlated with a poor prognosis in sepsis induced ARDS patients induced by sepsis. Knockdown of circN4bp1 inhibited the lung injury and improved the long-time survival through blunting the M1 macrophage activation in cecal ligation and puncture- (CLP-) induced ARDS mice. Moreover, bioinformatics analysis predicated a circN4bp1/miR-138-5p ceRNA network, which was confirmed by luciferase reporter assay and RNA binding protein immunoprecipitation (RIP). CircN4bp1 affected macrophage differentiation by binding to miR-138-5p, thus regulating the expression of EZH2 in vivo and ex vivo. Lastly, the m6A level of circN4bp1was found to be elevated in ARDS mice; inhibition of m6A methyltransferase METTL3 blocked this response in vitro. Therefore, circN4bp1 can function as a miR-138-5p sponge for the modulation of macrophage polarization through regulation the expression of EZH2 and may serve as a potential target and/or prognostic marker for ARDS patients following sepsis.


Assuntos
MicroRNAs , Proteínas Nucleares/genética , RNA Circular , Proteínas de Ligação a RNA/genética , Síndrome do Desconforto Respiratório , Sepse , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Metiltransferases/metabolismo , Camundongos , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Síndrome do Desconforto Respiratório/genética , Sepse/genética , Sepse/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L801-L812, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994912

RESUMO

This study sets out to establish the comparative contribution of PD-L1 expression by pulmonary endothelial cells (ECs) and/or epithelial cells (EpiCs) to the development of indirect acute lung injury (iALI) by taking advantage of the observation that treatment with naked siRNA by intratracheal delivery in mice primarily affects lung EpiCs, but not lung ECs, while intravenous delivery of liposomal-encapsulated siRNA largely targets vascular ECs including the lung, but not pulmonary EpiCs. We showed that using a mouse model of iALI [induced by hemorrhagic shock followed by septic challenge (Hem-CLP)], PD-L1 expression on pulmonary ECs or EpiCs was significantly upregulated in the iALI mice at 24 h post-septic insult. After documenting the selective ability of intratracheal versus intravenous delivery of PD-L1 siRNA to inhibit PD-L1 expression on EpiCs versus ECs, respectively, we observed that the iALI-induced elevation of cytokine/chemokine levels (in the bronchoalveolar lavage fluid, lung lysates, or plasma), lung myeloperoxidase and caspase-3 activities could largely only be inhibited by intravenous, but not intratracheal, delivery of PD-L1 siRNA. Moreover, intravenous, but not intratracheal, delivery led to a preservation of normal tissue architecture, lessened pulmonary edema, and reduced neutrophils influx induced by iALI. In addition, in vitro mouse endothelial cell line studies showed that PD-L1 gene knockdown by siRNA or knockout by CRISPR/Cas9-mediated gene manipulation, reduced monolayer permeability, and maintained tight junction protein levels upon recombinant IFN-γ stimulation. Together, these data imply a critical role for pulmonary vascular ECs in mediating PD-1:PD-L1-driven pathological changes resulting from systemic stimuli such as Hem-CLP.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Antígeno B7-H1/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Peroxidase/metabolismo , RNA Interferente Pequeno/metabolismo , Sepse/metabolismo , Choque Hemorrágico/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G106-G114, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431333

RESUMO

The liver is an organ that, when dysfunctional in a septic patient, is strongly associated with morbidity and mortality. Understanding the pathophysiology of liver failure during sepsis may lead to improved diagnostics and potential therapeutic targets. Historically, programmed cell death receptor (PD) ligand 1 (PD-L1) has been considered the primary ligand for its checkpoint molecule counterpart, PD-1, with PD-L2 rarely in the immunopathological spotlight. PD-1 and PD-L1 contribute to liver dysfunction in a murine cecal ligation and puncture (CLP) model of sepsis, but virtually nothing is known about PD-L2's role in sepsis. Therefore, our central hypothesis was that sepsis-induced changes in hepatic PD-L2 expression contributed to worsened liver function and, subsequently, more pronounced morbidity and mortality. We found that although PD-L1 gene deficiency attenuated the hepatic dysfunction seen in wild-type mice after CLP, the loss of PD-L2 appeared to actually worsen indices of liver function along with a trend toward higher liver tissue vascular permeability. Conversely, some protective effects of PD-L2 gene deletion were noted, such as reduced liver/peritoneal bacterial load and reduced IL-6, IL-10, and macrophage inflammatory protein 2 levels following CLP. These diverse actions, as well as the unique expression pattern of PD-L2, may explain why no overt survival advantage could be witnessed in the septic PD-L2-/- mice. Taken together, these data suggest that although PD-L2 has some selective effects on the hepatic response seen in the septic mouse, these factors are not sufficient to alter septic mortality in this adult murine model. NEW & NOTEWORTHY Our study shows not only that ligands of the checkpoint protein PD-1 respond inversely to a stressor such as septic challenge (PD-L2 declines, whereas PD-L1 rises) but also that aspects of liver dysfunction increase in septic mice lacking the PD-L2 gene. Furthermore, these differences in PD-L2 gene-deficient animals culminated in the abrogation of the survival advantage seen in the septic PD-L1-knockout mice, suggesting that PD-L2 may have roles beyond a simple immune tolerogen.


Assuntos
Hepatopatias/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/genética , Sepse/imunologia , Animais , Apoptose/genética , Ceco/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Hepatopatias/etiologia , Hepatopatias/genética , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/genética
10.
Biochem Biophys Res Commun ; 497(4): 978-982, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29448102

RESUMO

Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos , Ligadura , Métodos , Plasmídeos , Reação em Cadeia da Polimerase
11.
Tumour Biol ; 39(5): 1010428317706209, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28488547

RESUMO

CD8+ T cells are considered to be critical in tumor surveillance and elimination. Increased CD8+ T cell frequency and function is associated with better prognosis in cancer patients. Interleukin 10 is a cytokine with controversial roles in CD8+ T cell-mediated anti-tumor immunity. We therefore examined the interleukin 10 expression and consumption in CD8+ T cells harvested from the peripheral blood and resected tumors of gastric cancer patients of stages II-IV. We found that the gastric cancer patients presented significantly elevated frequencies of interleukin 10-expressing cells in both CD4+ and CD8+ T cells compared to healthy controls. But distinctive from the interleukin 10-expressing CD4+ T cells, which increased in frequency in advanced cancer, the interleukin 10-expressing CD8+ T cells did not increase with cancer stage in the peripheral blood and actually decreased with cancer stage in resected tumor. Interleukin 10 and interleukin 10 receptor expression was also enriched in interferon gamma-expressing activated CD8+ T cells. Compared to interleukin 10-nonexpressing CD8+ T cells, interleukin 10 receptor-expressing CD8+ T cells secreted significantly elevated interferon gamma levels. Treatment of anti-CD3/CD28-stimulated, purified CD8+ T cells with interleukin 10 alone could significantly enhance CD8+ T cell survival, an effect dependent on interleukin 10 receptor expression. Interleukin 10 also increased CD8+ T cell proliferation synergistically with interferon gamma but not alone. Analysis of downstream signal transducer and activator of transcription molecules showed that interleukin 10 treatment significantly increased the phosphorylation of signal transducer and activator of transcription 3 and signal transducer and activator of transcription 1 to lesser extent. Together, these results demonstrate that interleukin 10 possessed stimulatory roles in activated CD8+ T cells from gastric cancer patients.


Assuntos
Interferon gama/genética , Interleucina-10/biossíntese , Receptores de Interleucina-10/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/genética , Feminino , Humanos , Interferon gama/imunologia , Interleucina-10/genética , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Receptores de Interleucina-10/biossíntese , Fatores de Transcrição STAT/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia
12.
Cell Physiol Biochem ; 38(5): 1752-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161112

RESUMO

BACKGROUND: Acute lung injury (ALI) is characterized by rapid induction of inflammation at the alveolar-capillary membrane, and immunosuppressive mechanisms were shown to contribute to its resolution. Despite the central role of lymphocytes in initiating and mediating an inflammatory response, their influx dynamics in ALI has not been examined. METHODS: We collected mini-BAL samples from the lung of ALI patients over a maximum period of 7 days, and examined the lymphocyte composition. RESULTS: CD3+CD4+IFN-gamma+ Th1 cells were detected early on in all patients examined, while IL-10-producing B cells and CD3+CD4+CD25hiFoxp3+ Treg cells appeared later. Interestingly, IL-10-producing B cells appeared earlier than Tregs in most subjects, which possibly exerted anti-inflammatory function before Tregs. We then found that in patients with earlier recruitment of IL-10-producing B cells, the magnitude of Th1 inflammation decreased significantly over time, which was not observed in patients with later recruitment of IL-10-producing B cells. Furthermore, early IL-10-producing B cell recruiters also had significantly earlier recruitment of Tregs and better survival than late IL-10-producing B cell recruiters. CONCLUSION: This study provided data on the alveolar infiltration of lymphocytes during ALI, which suggested an inhibitory role of IL-10-producing B cells in ALI and emphasized the importance of controlling inflammation during the initial stage of ALI.


Assuntos
Lesão Pulmonar Aguda/patologia , Linfócitos B/imunologia , Interleucina-10/metabolismo , Alvéolos Pulmonares/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/mortalidade , Idoso , Linfócitos B/citologia , Linfócitos B/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia
13.
Zhonghua Yi Xue Za Zhi ; 94(34): 2677-80, 2014 Sep 16.
Artigo em Zh | MEDLINE | ID: mdl-25511596

RESUMO

OBJECTIVE: To explore the sensitivity, specificity and clinical validity of fetal Rh genotyping from maternal blood. METHODS: A comprehensive literature search of PubMed, Embase and Web of Science was performed for describing fetal RhD determination from maternal blood. The inclusion criteria were established based on the validity criteria for diagnostic research. And the eligible entries were collected and analyzed with MetaDisc4.0. RESULTS: This meta-analysis included 55 studies with a total of 17 138 samples. The random-effect model was used for analysis because of heterogeneity. The pooled sensitivity and specificity were 98.5% and 97.3% respectively. The SROC curve was plotted and the area under the curve (AUC) calculated (AUC = 0.994). The subgroup and sensitivity analyses were performed. The sensitivity of 25 studies with samples<100 (94.6%) was significantly lower than those of 19 studies with samples 100-300 (98.5%) and 11 studies with samples>300 (99.0%) (χ² = 36.800, 106.062, P < 0.05). The sensitivity of 19 studies with samples 100-300 (98.5%) was not different from that of 11 studies with samples >300 (99.0%)( χ² = 3.068, P > 0.05). CONCLUSIONS: Noninvasive prenatal diagnosis of fetal RhD status from maternal blood represents a significant achievement in the application of research with high sensitivity and specificity. It may be applied for screening testing of all RhD⁻ negative pregnant women.


Assuntos
Sistema do Grupo Sanguíneo Rh-Hr , Área Sob a Curva , Feminino , Feto , Genótipo , Humanos , Gravidez
14.
Int J Pharm ; 658: 124203, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38705249

RESUMO

Most nanomedicines with suitable sizes (normally 100-200 nm) exhibit favorable accumulation in the periphery of tumors but hardly penetrate into deep tumors. Effective penetration of nanomedicines requires smaller sizes (less than 30 nm) to overcome the elevated tumor interstitial fluid pressure. Moreover, integrating an efficient diagnostic agent in the nanomedicines is in high demand for precision theranostics of tumors. To this end, a near-infrared light (NIR) -triggered size-shrinkable micelle system (Fe3O4@AuNFs/DOX-M) coloaded antitumor drug doxorubicin (DOX) and biomodal imaging agent magnetic gold nanoflower (Fe3O4@AuNFs) was developed to achieve efficient theranostic of tumors. Upon the accumulation of Fe3O4@AuNFs/DOX-M in the tumor periphery, a NIR laser was irradiated near the tumor sites, and the loaded Fe3O4@Au NFs could convert the light energy to heat, which triggered the cleavage of DOX-M to the ultra-small micelles (∼5 nm), thus realizing the deep penetration of micelles and on-demand drug release. Moreover, Fe3O4@AuNFs in the micelles could also be used as CT/MRI dual-modal contrast agent to "visualize" the tumor. Up to 92.6 % of tumor inhibition was achieved for the developed Fe3O4@AuNFs/DOX-M under NIR irradiation. This versatile micelle system provided a promising drug carrier platform realizing efficient tumor dual-modal diagnosis and photothermal-chemotherapy integration.


Assuntos
Doxorrubicina , Ouro , Raios Infravermelhos , Micelas , Nanomedicina Teranóstica , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Animais , Ouro/química , Ouro/administração & dosagem , Nanomedicina Teranóstica/métodos , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Liberação Controlada de Fármacos , Camundongos , Antibióticos Antineoplásicos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Meios de Contraste/química , Meios de Contraste/administração & dosagem , Portadores de Fármacos/química , Tamanho da Partícula , Feminino , Camundongos Nus
15.
J Ovarian Res ; 17(1): 20, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229135

RESUMO

BACKGROUND: Bisphenol A (BPA), an endocrine disrupting chemical with weak estrogenic and anti-androgenic activity, is widely present in various environmental media and organisms. It has certain reproductive toxicity and can cause a variety of female reproductive system diseases. Although BPA-stimulated apoptosis of granulosa cells has been widely elaborated, the effect of BPA on mouse pre-antral follicle granulosa cells (mpGCs) has not been well elucidated. RESULTS: In this study, the results of live-dead cell staining showed that high concentrations of BPA severely impaired mpGCs growth viability and affected the cell cycle transition of mpGCs. We confirmed that BPA promotes the production of reactive oxygen species (ROS) and facilitates oxidative stress in mpGCs. In addition, immunofluorescence, transmission electron microscopy, and flow cytometry experiments demonstrated that BPA treatment for mpGCs resulted in apoptotic features, such as rounding, cytoplasmic crinkling, and mitochondrial damage. This was accompanied by a large production of ROS and apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus. RNA-seq data showed that several apoptosis-related pathways were enriched in the high concentration BPA-treated group compared with the normal group, such as the p53 pathway, MAPK pathway, etc. CONCLUSIONS: These results suggest that cells undergo oxidative stress effects and apoptosis after BPA treatment for mpGCs, which affects normal follicle development. The potential mechanism of BPA-induced female reproductive toxicity was elucidated, while providing a research basis for the prevention and treatment of female reproductive diseases.


Assuntos
Apoptose , Compostos Benzidrílicos , Estresse Oxidativo , Fenóis , Camundongos , Animais , Feminino , Espécies Reativas de Oxigênio/metabolismo , Células da Granulosa/metabolismo
16.
Biomol Biomed ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38226808

RESUMO

Neutrophils are important inflammatory effector cells that protect against foreign invasion but also cause self-harm. Numerous neutrophils infiltrate the lungs in acute respiratory distress syndrome/acute lung injury (ARDS/ALI) patients. However, the exact impact of neutrophil infiltration on ARDS's onset and progression remains unclear. To investigate this, we analyzed two ARDS-related datasets from the Gene Expression Omnibus public database and discovered an association between CD177, a neutrophil-specific surface protein, and ARDS progression. We used quantitative flow cytometry to assess CD177+ neutrophils in the peripheral blood of clinical ARDS patients versus healthy controls, finding a significant increase in CD177+ neutrophils percentage among total neutrophils in ARDS patients. This finding was further confirmed in ALI mouse models. Subsequent animal experiments showed that anti-CD177 effectively reduces pulmonary edema, neutrophil infiltration, and inflammatory cytokine release, along with a decrease in reactive oxygen species (ROS) and myeloperoxidase (MPO) levels. We also established an in vitro co-culture system to mimic neutrophil and lung epithelial cell interactions. In the anti-CD177 group, we observed decreased expression of NLRP3, caspase 1, PAD4, MPO, and ROS, along with a reduction in certain inflammatory cytokines. These results indicate a crucial role for the CD177 gene in ARDS's development and progression. Inhibiting CD177 may help mitigate excessive activation of NLRP3 inflammasomes, ROS, and neutrophil extracellular traps (NETs), thus alleviating ARDS.

17.
Cells Dev ; : 203925, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797332

RESUMO

Undescended testis (UDT), known as cryptorchidism (CRY), is a common congenital disorder in which one or both testicles do not descend normally into the scrotum. A unilateral UDT model was established by inducing UDT in mice through surgery. The results showed that the testis in the UDT model group was abnormal; the lumen of the seminiferous tubule was atrophic; apoptosis, necrosis and shedding were observed in many of the germ cells; the level of sex hormones was abnormal; and mature sperm was reduced. Subsequently, transcriptome sequencing was conducted on the testicular tissue of UDT model mice. Through analysis and verification of differential genes, AZIN2 was identified as playing a key role in the decline in male fertility caused by cryptorchidism. AZIN2 expression and spermine content was down-regulated in the testis of the UDT group. We then used a combination of hypoxanthine and xanthine to create a GC-1 cell damage model. In this model, AZIN2 expression and spermine content was down-regulated. When si-Azin2 transfected GC-1 cells, cell viability and proliferation were decreased. However, in the GC-1 cell damage model transfected with Azin2 over-expressed plasmid, AZIN2 expression and spermine content was up-regulated, reversing the cell damage caused by hypoxanthine and xanthine, and restoring the proliferation ability of GC-1 cells. These results indicate that in UDT, down-regulated AZIN2 expression is a factor in testicular damage. This discussion of the connection between AZIN2 and germ cells has important clinical significance as it provides an important reference for the diagnosis and treatment of cryptorchidism.

18.
J Med Chem ; 67(3): 1961-1981, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38272464

RESUMO

Hyperactivated KRAS mutations fuel tumorigenesis and represent attractive targets for cancer treatment. While covalent inhibitors have shown clinical benefits against the KRASG12C mutant, advancements for non-G12C mutants remain limited, highlighting the urgent demand for pan-KRAS inhibitors. RNA G-quadruplexes (rG4s) in the 5'-untranslated region of KRAS mRNA can regulate KRAS translation, making them promising targets for pan-KRAS inhibitor development. Herein, we designed and synthesized 50 novel coumarin-quinolinium derivatives, leveraging our previously developed rG4-specific ligand, QUMA-1. Notably, several compounds exhibited potent antiproliferative activity against cancer cells as pan-KRAS translation inhibitors. Among them, 15a displayed exceptional capability in stabilizing KRAS rG4s, suppressing KRAS translation, and consequently modulating MAPK and PI3K-AKT pathways. 15a induced cell cycle arrest, prompted apoptosis in KRAS-driven cancer cells, and effectively inhibited tumor growth in a KRAS mutant xenograft model. These findings underscore the potential of 15a as a pan-KRAS translation inhibitor, offering a novel and promising approach to target various KRAS-driven cancers.


Assuntos
Quadruplex G , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Síntese de Proteínas , Mutação
19.
Front Cell Infect Microbiol ; 14: 1358801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895732

RESUMO

Background: Rapid and accurate diagnosis of the causative agents is essential for clinical management of bloodstream infections (BSIs) that might induce sepsis/septic shock. A considerable number of suspected sepsis patients initially enter the health-care system through an emergency department (ED), hence it is vital to establish an early strategy to recognize sepsis and initiate prompt care in ED. This study aimed to evaluate the diagnostic performance and clinical value of droplet digital PCR (ddPCR) assay in suspected sepsis patients in the ED. Methods: This was a prospective single-centered observational study including patients admitted to the ED from 25 October 2022 to 3 June 2023 with suspected BSIs screened by Modified Shapiro Score (MSS) score. The comparison between ddPCR and blood culture (BC) was performed to evaluate the diagnostic performance of ddPCR for BSIs. Meanwhile, correlative analysis between ddPCR and the inflammatory and prognostic-related biomarkers were conducted to explore the relevance. Further, the health economic evaluation of the ddPCR was analyzed. Results: 258 samples from 228 patients, with BC and ddPCR performed simultaneously, were included in this study. We found that ddPCR results were positive in 48.13% (103 of 214) of episodes, with identification of 132 pathogens. In contrast, BC only detected 18 positives, 88.89% of which were identified by ddPCR. When considering culture-proven BSIs, ddPCR shows an overall sensitivity of 88.89% and specificity of 55.61%, the optimal diagnostic power for quantifying BSI through ddPCR is achieved with a copy cutoff of 155.5. We further found that ddPCR exhibited a high accuracy especially in liver abscess patients. Among all the identified virus by ddPCR, EBV has a substantially higher positive rate with a link to immunosuppression. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity as well as prognosis. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs. Conclusions: The multiplexed ddPCR delivers precise and quantitative load data on the causal pathogen, offers the ability to monitor the patient's condition and may serve as early warning of sepsis in time-urgent clinical situations as ED. Importance: Early detection and effective administration of antibiotics are essential to improve clinical outcomes for those with life-threatening infection in the emergency department. ddPCR, an emerging tool for rapid and sensitive pathogen identification used as a precise bedside test, has developed to address the current challenges of BSI diagnosis and precise treatment. It characterizes sensitivity, specificity, reproducibility, and absolute quantifications without a standard curve. ddPCR can detect causative pathogens and related resistance genes in patients with suspected BSIs within a span of three hours. In addition, it can identify polymicrobial BSIs and dynamically monitor changes in pathogenic microorganisms in the blood and can be used to evaluate antibiotic efficacy and survival prognosis. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs.


Assuntos
Diagnóstico Precoce , Serviço Hospitalar de Emergência , Reação em Cadeia da Polimerase , Sepse , Humanos , Estudos Prospectivos , Sepse/diagnóstico , Sepse/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Biomarcadores/sangue , Hemocultura/métodos , Adulto
20.
Biotechnol Adv ; 65: 108150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37044266

RESUMO

Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.


Assuntos
Carotenoides , Engenharia Metabólica , Humanos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA