Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nanotechnology ; 32(50)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34450612

RESUMO

During the past decades, nano-structured metal oxide electrode materials have received growing attention due to their low development cost and high theoretical specific capacity, accordingly, quite a lot of metal oxide electrode materials are being used in electrochemical energy storage devices. However, the further development was limited by the relatively low electrical conductivity and the volume expansion during electrochemical reactions. Thus, many approaches have been proposed to obtain high-efficiency metal oxide electrode materials, such as designing nanomaterials with ideal morphology and high specific surface area, optimizing with carbon-based materials (such as graphene and glucose) to prepare nanocomposites, combining with conductive substrates to enhance the conductivity of electrodes, etc. Owning to the advantages of low cost and high chemical stability of carbon materials, core-shell structure formed by carbon-coated metal oxides is considered to be a promising solution to solve these problems. Therefore, this review mainly focuses on recent research advances in the field of carbon-coated metal oxides for energy storage, summarizing the advantages and disadvantages of common metal oxides and different types of carbon sources, and proposing methods to optimize the material properties in terms of structure and morphology, carbon layer thickness, coating method, specific surface area and pore size distribution, as well as improving electrical conductivity. In addition, the double or multi-layer coating strategy is also a reflection of the continuous development of carbon coating method. Hopefully, this rereview may provide a new direction for the renewal and development of future energy storage electrode materials.

2.
Nanotechnology ; 31(7): 075501, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31661676

RESUMO

While continuously developing high-performance chemoresistive gas sensors, reducing device power consumption is not negligible. One of the most efficient ways is to enable gas sensors to work close to room temperature. In this work, we present a gas sensor based on hexagonal tin disulfide (SnS2) nanoplates for sensitive and reversible NO2 sensing at room temperature. Two-dimensional SnS2 nanoplates are synthesized via a facile hydrothermal method using Triton X-100 as a surfactant. The sensor exhibits a high response of 15.6 for 50 ppm NO2 with an experimental limit of detection of 50 ppb at room temperature. Besides, excellent linearity, outstanding selectivity, and reliable long-term stability within 40 d are also demonstrated during the experiment process. The sensing mechanism of this sensor could be explained as the physisorption and charge transfer between NO2 molecules and SnS2 nanoplates, which make it possible for the sensor to work at such a low operating temperature. Our research resulted in a SnS2 nanoplate-based sensor that may pave a new way for effective NO2 detection in the future.

3.
Nanotechnology ; 29(27): 275401, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29664416

RESUMO

A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm-3 at 0.3 A cm-3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm-3 at 0.5 A cm-3 and an outstanding energy density of 33.8 at 483 mW cm-3. Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm-3, indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

4.
Phys Chem Chem Phys ; 19(29): 19043-19049, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702546

RESUMO

High-performance gas sensors based on metal oxides operated at room temperature are of great interest due to their energy saving and cost effective characteristics. How to improve the sensitivity of metal oxide gas sensors and enable their room-temperature operation are challenging for their realistic applications. In this work, we have designed and fabricated Al-doped NiO nanosheets for greatly enhanced NO2 detection at room temperature. Different amounts of Al were doped into two-dimensional (2D) NiO nanosheets via a fast and facile microwave assisted solvent-thermal technique. Sensing tests of the as-fabricated devices indicated that Al doping could significantly affect the gas-sensing properties of the NiO nanosheets due to increased oxygen vacancies as well as the formation of Lewis acid and base sites. When 12 at% of Al was added to the raw materials, the response value of the device to 10 ppm NO2 was enhanced more than 35 times compared with those of pure NiO nanosheets. In addition, when the amount of Al reached 20 at%, it took only 200 s for the gas sensor to achieve full recovery, which was a breakthrough for room temperature gas sensors based on metal oxides. Above all, the excellent performances of the as-fabricated devices make Al-doped NiO nanosheets a potential candidate for NO2 sensing applications. This design strategy can also give guidance for designing high-performance gas sensors based on other similar 2D sensing materials.

5.
Langmuir ; 32(37): 9418-27, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27571475

RESUMO

Cuprous oxide (Cu2O) is an attractive photocatalyst because of its visible-light-driven photocatalytic behavior, abundance, low toxicity, and environmental compatibility. However, its short electron diffusion length and low hole mobility result in low photocatalytic efficiency, which hinders its wider applications. Herein, we report an in situ method to introduce nitrogen-doped carbon dots (N-CDs) into Cu2O frameworks. It is interestingly found that the introduction of N-CDs drives the morphology of N-CDs/Cu2O to evolve from rough cube to sphere, and the most encouraging result is that all of the obtained N-CDs/Cu2O composites exhibit better photocatalytic activities than pure Cu2O cubes. The optimal N-CDs/Cu2O photocatalyst is synthesized with 10 mL of N-CDs solution, which shows the best degradation ability (100%, 70 min), far superior to pure Cu2O cubes (∼5%, 70 min) and P25 (∼10%, 70 min). Beside the photodegradation of methyl orange, N-CDs/Cu2O(10) composites also exhibit excellent photocatalytic activities in the photodegradation of methyl blue and rhodamine B. It is demonstrated that the excellent photocatalytic performance of N-CDs/Cu2O composites can be attributed to the highly roughened structure and the suppression of electron-hole recombination as a result of the introduction of N-CDs. These findings demonstrate that the conjugation of CDs is a promising method to improve the photocatalytic activities for traditional semiconductors.

6.
Phys Rev Lett ; 115(17): 171801, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551101

RESUMO

We employ a continuum approach to the three valence-quark bound-state problem in relativistic quantum field theory to predict a range of properties of the proton's radial excitation and thereby unify them with those of numerous other hadrons. Our analysis indicates that the nucleon's first radial excitation is the Roper resonance. It consists of a core of three dressed quarks, which expresses its valence-quark content and whose charge radius is 80% larger than the proton analogue. That core is complemented by a meson cloud, which reduces the observed Roper mass by roughly 20%. The meson cloud materially affects long-wavelength characteristics of the Roper electroproduction amplitudes but the quark core is revealed to probes with Q(2)≳3m(N)(2).

7.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793344

RESUMO

The four-electron oxidation process of the oxygen evolution reaction (OER) highly influences the performance of many green energy storage and conversion devices due to its sluggish kinetics. The fabrication of cost-effective OER electrocatalysts via a facile and green method is, hence, highly desirable. This review summarizes and discusses the recent progress in creating carbon-based materials for alkaline OER. The contents mainly focus on the design, fabrication, and application of carbon-based materials for alkaline OER, including metal-free carbon materials, carbon-based supported composites, and carbon-based material core-shell hybrids. The work presents references and suggestions for the rational design of highly efficient carbon-based OER materials.

8.
J Am Heart Assoc ; 13(3): e032100, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258658

RESUMO

BACKGROUND: Atrial fibrillation (AF) increases risk of embolic stroke, and in postoperative patients, increases cost of care. Consequently, ECG screening for AF in high-risk patients is important but labor-intensive. Artificial intelligence (AI) may reduce AF detection workload, but AI development presents challenges. METHODS AND RESULTS: We used a novel approach to AI development for AF detection using both surface ECG recordings and atrial epicardial electrograms obtained in postoperative cardiac patients. Atrial electrograms were used only to facilitate establishing true AF for AI development; this permitted the establishment of an AI-based tool for subsequent AF detection using ECG records alone. A total of 5 million 30-second epochs from 329 patients were annotated as AF or non-AF by expert ECG readers for AI training and validation, while 5 million 30-second epochs from 330 different patients were used for AI testing. AI performance was assessed at the epoch level as well as AF burden at the patient level. AI achieved an area under the receiver operating characteristic curve of 0.932 on validation and 0.953 on testing. At the epoch level, testing results showed means of AF detection sensitivity, specificity, negative predictive value, positive predictive value, and F1 (harmonic mean of positive predictive value and sensitivity) as 0.970, 0.814, 0.976, 0.776, and 0.862, respectively, while the intraclass correlation coefficient for AF burden detection was 0.952. At the patient level, AF burden sensitivity and positive predictivity were 96.2% and 94.5%, respectively. CONCLUSIONS: Use of both atrial electrograms and surface ECG permitted development of a robust AI-based approach to postoperative AF recognition and AF burden assessment. This novel tool may enhance detection and management of AF, particularly in patients following operative cardiac surgery.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Inteligência Artificial , Técnicas Eletrofisiológicas Cardíacas , Eletrocardiografia/métodos , Hospitais
9.
Dalton Trans ; 52(20): 6860-6869, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37157968

RESUMO

The design and synthesis of cost-effective and stable bifunctional electrocatalysts for water splitting via a green and sustainable fabrication way remain a challenging problem. Herein, a bio-inspired method was used to synthesize NiFeP nanoparticles embedded in (N,P) co-doped carbon with the added carbon nanotubes. The obtained Ni0.8Fe0.2P-C catalyst displayed excellent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in both alkaline and alkaline simulated seawater solutions. The optimal Ni0.8Fe0.2P-C/NF only needs overpotentials of 45 and 242 mV to reach the current density of 10 mA cm-2 under HER and OER working conditions in 1.0 M KOH solution, respectively. First-principles calculations revealed the presence of a strong interaction between the carbon layer and metal phosphide nanoparticles. Benefiting from this and carbon nanotubes modification, the fabricated Ni0.8Fe0.2P-C presents impressive stability, working continuously for 100 h without collapse. A low alkaline cell voltage of 1.56 V for the assembled Ni0.8Fe0.2P-C/NF//Ni0.8Fe0.2P-C/NF electrocatalyzer could afford a current density of 10 mA cm-2. Moreover, when integrated with a photovoltaic device, the bifunctional Ni0.8Fe0.2P-C electrocatalyst demonstrates application potential for sustainable solar-driven water electrolysis.

10.
Dalton Trans ; 51(27): 10420-10431, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762394

RESUMO

The systematic atomistic level investigation of low-index surface structures, stabilities, and catalytic performances of CoP and FeCoP2 towards the O2 reduction reaction (ORR) is vital for their applications. Employing first-principles calculations, it is revealed that CoP and FeCoP2 present the same surface stability in the order of (101) ≈ (011) > (111) > (001) > (110) > (010) > (100). They also possess a similar Wulff equilibrium crystal shape with (101) and (011) exposing the largest surface area. From the electronic view, FeCoP2 presents improved electronic conductivity compared with CoP. From the energy view, whether FeCoP2 delivers improved electrocatalytic activity toward the ORR with respect to CoP depends on the reactive surfaces and sites. Among the 4 surfaces considered, only CoP(101), FeCoP2(101) and FeCoP2(011) delivered ORR performances theoretically when the bridge metal-metal site acts as the reactive center, which makes CoP(011) the only exception. CoP(101)-bCo-Co and FeCoP2(011)-bFe-Co exhibit a larger thermodynamic limiting potential than FeCoP2(101)-bCo-Co, suggesting their higher performances toward the ORR. The last step of HO* desorption as the rate-limiting step accounts for 3/4. The third step of transformation from O* to HO* as the most sluggish step accounts for 1/4. The work function, d-band center, Bader charge, and electronic localization function calculations are performed to reveal the HO adsorption nature. The present work provides fundamental insight into the effect of Fe doping into CoP, the determination of the catalyst surface and the key species adsorption nature to guide the rational design of high-performance materials.

11.
Dalton Trans ; 51(41): 15863-15872, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36193644

RESUMO

N-doped graphene with nano-sized holes possesses abundant electrochemically active sites at the exposed edge and an open porous structure, leading to a better electrochemical performance and faster electron and ion transport than the basal planes in graphene. In this study, three-dimensional graphene with a porous structure and abundant doped N (3d-NHG) were synthesized as bifunctional electrodes for methyl parathion (MP) detection and supercapacitors. The roles of N-doping and the holey construction in the electrochemical performance of the 3d-NHG were systematically investigated through a combined theory-experiment strategy. The 3d-NHG-based electrochemical sensor successfully detected methyl parathion in the range of 38 nm-380 µM with a low detection limit (2.27 nM) and superior sensitivity. Furthermore, the 3d-NHG also demonstrated potential for use in supercapacitors with a specific capacitance of 207 F g-1 at 1 A g-1 and excellent rate capability (76% capacitance retention at 10 A g-1). Density functional theory calculations revealed that the exposed carbon sites at the edge are the reactive sites for species adsorption. Moreover, the holey structure in 3d-NHG plays a dominating role in electrochemical processes and in the enhanced electrocatalysis. This work provides guidance for the rational design of high-performance bifunctional electrodes for MP detection and supercapacitors by defect engineering.

12.
Dalton Trans ; 51(38): 14517-14525, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36070498

RESUMO

Preparing low-cost and highly efficient electrocatalysts for the hydrogen evolution reaction using a simple strategy still faces challenges. In this work, we proposed a facile phosphating process to successfully transform CoFe-BTC (BTC = 1,3,5-benzenetricarboxylate) precursors into carbon-incorporated bimetallic phosphide (CoFe-P/C) nanospheres. Due to the synergistic effect between bimetals and uniformly covered carbon shells outside, the as-synthesized porous bimetallic phosphide nanospheres exhibit superior HER activity, enhanced kinetics, and excellent cycle durability in both acidic and alkaline solutions. The optimized material could afford a current density of 10 mA cm-2 with overpotentials of 138 and 193 mV for the HER in acidic and alkaline solutions, respectively. Meanwhile, it delivered small Tafel slopes of 84 and 78 mV dec-1 for the HER in 0.5 M H2SO4 and 1.0 M KOH, respectively. Moreover, an assembled alkaline electrolyzer enabled a low voltage of 1.62 V to drive a current density of 10 mA cm-2 for overall water splitting. DFT calculations indicate that the CoP-Fe2P composite is supposed to exhibit better HER performance than each component, revealing the vital role of the interfacial site in catalyzing the HER.

13.
ACS Appl Mater Interfaces ; 13(37): 44427-44439, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34506106

RESUMO

Molybdenum disulfide (MoS2) is a promising candidate for use as a supercapacitor electrode material and non-noble-metal electrocatalyst owing to its relatively high theoretical specific capacitance, Pt-like electronic feature, and graphene-like structure. However, insufficient electrochemically active sites along with poor conductivity significantly hinder its practical application. Heteroatom doping and phase engineering have been regarded as effective ways to overcome the inherent limitations of MoS2 and enhance its ion storage and electrocatalytic performance. In this study, a plasma-assisted nitrogen-doped 1T/2H MoS2 heterostructure has been proposed for the first time, resulting in excellent supercapacitor performance and hydrogen evolution reaction activity. XPS, Raman, and TEM analysis results indicate that N atoms have been successfully doped into MoS2 nanosheets via room-temperature low-power N2 plasma, and the 1T/2H hybrid phase is maintained. As expected, the 1T/2H MoS2 heterostructure after a 10 min plasma treatment displayed a much boosted supercapacitive performance with a high specific capacitance of 410 F g-1 at 1 A g-1 and an excellent hydrogen evolution property with a low overpotential of 131 mV vs RHE at 10 mA cm-2 for hydrogen evolution reaction. The excellent performance is superior to most of the recently reported outstanding MoS2-based electrode and electrocatalytic materials. Moreover, the as-assembled flexible symmetric supercapacitor shows a high specific capacitance of 84.8 F g-1 and superior mechanical robustness with 84.5% capacity retention after 2000 bending cycles.

14.
Dalton Trans ; 50(31): 10867-10879, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34297016

RESUMO

Single-metal-atom catalysts supported on graphdiyne (GDY) exhibit great potential for catalyzing low temperature CO oxidation in solving the increasingly serious environmental problems caused by CO emissions due to the high catalytic activity, clear structure, uniform metal distribution and low cost. First principle calculations were employed to study CO oxidation activities of four M@GDY single-atom catalysts (M = Pt, Rh, Cu, and Ni). For each catalyst, five possible reaction mechanisms including bi-molecular and tri-molecular reactions were discussed. According to the calculated reaction barriers, the preferred reaction pathway is via the bi-molecular Langmuir-Hinshelwood (BLH) ((CO + O2)* → OCOO* → CO2 + O*) route to yield the first CO2 molecule with 0.55, 0.51, and 0.53 eV as the energy barriers of the rate-limiting steps of Pt@GDY, Rh@GDY, and Cu@GDY, respectively, whereas for Ni@GDY, it switches to the tri-molecular Eley-Rideal (TER1) ((2CO)* + O2→ OCOOCO* → 2CO2) mechanism with the reaction barrier of the rate-limiting step being 1.27 eV. Based on the energy difference in the initial states of the five reaction mechanisms, TER1 is generally viable. No matter it is based on the calculated reaction barrier or the energy of the initial state of each mechanism, the non-noble Cu@GDY is supposed to be an efficient catalyst as the noble ones. The electronic properties are calculated to explain the bonding strength and origin of the catalytic performance. The GDY support plays an important role in the electron transfer process.

15.
ACS Appl Mater Interfaces ; 13(40): 47717-47727, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34605245

RESUMO

Defect engineering is a reasonable solution to improve the surface properties and electronic structure of nanomaterials. However, how to introduce dual defects into nanomaterials by a simple way is still facing challenge. Herein, we propose a facile two-step solvothermal method to introduce Fe dopants and S vacancies into metal-organic framework-derived bimetallic nickel cobalt sulfide composites (NiCo-S). The as-prepared Fe-doped NiCo-S (Fe-NiCo-S) possesses improved charge storage kinetics and activities as electrode material for supercapacitors and the oxygen evolution reaction (OER). The obtained Fe-NiCo-S nanosheet has a high specific capacitance (2779.6 F g-1 at 1 A g-1) and excellent rate performance (1627.2 F g-1 at 10 A g-1). A hybrid supercapacitor device made of Fe-NiCo-S as the positive electrode and reduced graphene oxide (rGO) as the negative electrode presents a high energy density of 56.0 Wh kg-1 at a power density of 847.1 W kg-1 and excellent cycling stability (capacity retention of 96.5% after 10,000 cycles at 10 A g-1). Additionally, the Fe-NiCo-S composite modified by Fe doping and S vacancy has an ultralow oxygen evolution overpotential of 247 mV at 10 mA cm-2. Based on the density functional theory (DFT) calculation, defects cause more electrons to appear near the Fermi level, which is conducive to electron transfer in electrochemical processes. Our work provides a rational strategy for facilely introducing dual defects into metal sulfides and may provide a novel idea to prepare electrode materials for energy storage and energy conversion application.

16.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207732

RESUMO

Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.

17.
Dalton Trans ; 49(36): 12610-12621, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32869805

RESUMO

Functionalization of metal-organic framework (MOF) ligands can tune the adsorption properties of MOFs. The adsorptions of NO, NO2, NH3, C5H5N, C4H5N, and C4H4O on pristine and five X-functionalized HKUST-1, i.e. Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (X = CH3, CH3O, NH2, NO2, and Br) are evaluated by van der Waals corrected density functional theory calculations. Despite the fact that the open metal center is the energetically preferred adsorption site for most of them, the functional group site can yield a comparable adsorption ability with the open metal center. This is particularly true for pyrrole C4H5N adsorption on CH3O-functionalized HKUST-1 where the functional group site shows stronger adsorption stability than the open metal center site, probably due to the formed hydrogen bond between pyrrole and the CH3O functional group. While the CH3- or CH3O-functionalized organic linker in these MOFs strengthens the adsorption of all the considered species, that of NO2-, Br-, or NH2-functional groups reduces, which is associated with their topologies. Among them, only CH3- or CH3O-functionalized HKUST-1 presents the fmj (orthorhombic crystal system) topology while all the others are isostructural to the pristine HKUST-1 with the tbo (twisted boracite-type, cubic) topological structure. Among six adsorbates, two basic adsorbates, C5H5N and NH3, always yield the strongest bonding strength upon adsorption on the pristine and five functionalized HKUST-1. Electronic properties including the Bader charges, electron density differences, and electron localization function were investigated to comprehend their adsorption behaviors. This work provides guidance for the proper functionalization of HKUST-1 with improved adsorption properties for specific adsorbates.

18.
J Phys Condens Matter ; 32(22): 225001, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31910398

RESUMO

The interfacial stability of copper/diamond directly affects its mechanical properties and thermal conductivity. The atomic structures and electronic properties of Cu/diamond and Cu/X/diamond interfaces have been identified to investigate the effect of interfacial additive X (X = Ni or N) on the low-index interfacial adhesion of copper/diamond composites. For unmodified composites, the interfacial stability decreases in the order of Cu(0 0 1)/diamond(0 0 1) > Cu(1 1 1)/diamond(1 1 1) > Cu(0 1 1)/diamond(0 1 1). The metallic interfacial additive Ni is found to enhance the Cu(0 1 1)/diamond(0 1 1) interfacial stability and exchange the interfacial stability sequence of (0 1 1) and (1 1 1) composites. The nonmetallic element N will promote the stability of Cu(1 1 1)/diamond(1 1 1) but not alter the stability order of the composites at different interfaces. To explain the origin of interfacial stability, a series of analyses on atomic structures and electronic properties have been carried out, including the identification of the type of formed interfacial boundaries, the measurement of interfacial bond lengths, and the calculations of density of states, bond populations, and atomic charge. The stability of the interface is found to be related to the type of formed interfacial boundary and bond, the interfacial bond populations, and the interfacial bond numbers. The layer-projected density of states reveals that all of the considered interfaces exhibit metal characteristics. The interfacial Ni additive is found to be an electron donor contributing the electrons to its bonded Cu and C atoms while the interfacial N atom is an electron acceptor where it mainly accepts the electrons from its bonded Cu and C.

19.
ChemSusChem ; 10(20): 4056-4065, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28857459

RESUMO

Metal sulfides have aroused great interest for energy storage. However, their low specific capacities and inferior rate capabilities hinder their practical applications. In this work, a facile cobalt-doping process is used to boost the electrochemical performance of Ni@Ni3 S2 core-sheath nanowire film electrodes for high-performance electrochemical energy storage. Co ions are doped successfully and uniformly into Ni3 S2 nanosheets through a facile ion-exchange process. The electrochemical properties of film electrodes are improved greatly, and an ultrahigh volumetric capacity (increased from 105 to 730 C cm-3 at 0.25 A cm-3 ) and excellent rate capability are obtained after Co is doped into Ni@Ni3 S2 core-sheath nanowires. A hybrid asymmetric supercapacitor with Co-doped Ni@Ni3 S2 as the positive electrode and graphene-carbon nanotubes as the negative electrode is assembled and exhibits an ultrahigh volumetric capacitance of 142 F cm-3 (based on the total volume of both electrodes) at 0.5 A cm-3 and excellent cycling stability (only 3 % capacitance decrease after 5000 cycles). Moreover, the volumetric energy density can reach 44.5 mWh cm-3 , which is much larger than those of thin-film lithium batteries (1-10 mWh cm-3 ). These results may provide useful insights for the fabrication of high-performance film electrodes for energy-storage applications.


Assuntos
Cobalto/química , Capacitância Elétrica , Níquel/química , Eletroquímica , Modelos Moleculares , Conformação Molecular
20.
ACS Appl Mater Interfaces ; 8(41): 27868-27876, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27681224

RESUMO

Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH)2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm3 at 0.5 A/cm3) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH)2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm3 (at 0.25 A/cm3) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm3, which is much higher than that of most thin film lithium batteries (1-10 mWh/cm3). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA