Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325259

RESUMO

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Assuntos
Ilhotas Pancreáticas , Urocortinas , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Somatostatina/metabolismo , Urocortinas/metabolismo
2.
Acta Physiol (Oxf) ; 229(3): e13464, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145704

RESUMO

AIM: It is debated whether the inhibition of glucagon secretion by glucose results from direct effects of glucose on the α-cell (intrinsic regulation) or by paracrine effects exerted by beta- or delta-cell products. METHODS: To study this in a more physiological model than isolated islets, we perfused isolated rat pancreases and measured glucagon, insulin and somatostatin secretion in response to graded increases in perfusate glucose concentration (from 3.5 to 4, 5, 6, 7, 8, 10, 12 mmol/L) as well as glucagon responses to blockage/activation of insulin/GABA/somatostatin signalling with or without addition of glucose. RESULTS: Glucagon secretion was reduced by about 50% (compared to baseline secretion at 3.5 mmol/L) within minutes after increasing glucose from 4 to 5 mmol/L (P < .01, n = 13). Insulin secretion was increased minimally, but significantly, compared to baseline (3.5 mmol/L) at 4 mmol/L, whereas somatostatin secretion was not significantly increased from baseline until 7 mmol/L. Hereafter secretion of both increased gradually up to 12 mmol/L glucose. Neither recombinant insulin (1 µmol/L), GABA (300 µmol/L) or the insulin-receptor antagonist S961 (at 1 µmol/L) affected basal (3.5 mmol/L) or glucose-induced (5.0 mmol/L) attenuation of glucagon secretion (n = 7-8). Somatostatin-14 attenuated glucagon secretion by ~ 95%, and blockage of somatostatin-receptor (SSTR)-2 or combined blockage of SSTR-2, -3 and -5 by specific antagonists increased glucagon output (at 3.5 mmol/L glucose) and prevented glucose-induced (from 3.5 to 5.0 mmol/L) suppression of secretion. CONCLUSION: Somatostatin is a powerful and tonic inhibitor of glucagon secretion from the rat pancreas and is required for glucose to inhibit glucagon secretion.


Assuntos
Glucagon/sangue , Glucose/administração & dosagem , Pâncreas/fisiologia , Somatostatina/fisiologia , Animais , Insulina/sangue , Perfusão , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA