Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 32(8): 13932-13945, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859351

RESUMO

In current research, it is still a hot topic for 3D reconstruction under complex illumination. This paper uses a polarization camera combined with a coding technique to propose a new 3D reconstruction method for polarized ambient light separation. Based on the polarization camera, a specific separation model is established to analyze the relationship between the polarization characteristics of polarized and natural light. Specular reflections were filtered first and then analyzed based on the stocks vector and muller matrix. A specific calculation process was used to calculate different polarization azimuths according to the polarization characteristics, and finally, the polarized light and ambient light were separated. The experimental results show that the use of this polarization camera approach reduces the number of steps required to rotate the polarizer multiple times. This not only reduces the shooting time but also improves the efficiency. Moreover, after separating the ambient light, polarization imaging suppresses the interference of the ambient light, which helps to highlight the complete point cloud image more clearly in the 3D reconstruction. The standard deviation of 3D reconstruction was improved to 0.1675 mm by using this method in indoor and outdoor experiments.

2.
Nano Lett ; 22(13): 5127-5136, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700100

RESUMO

Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Fluoretos , Pontos Quânticos/química , Temperatura
3.
Angew Chem Int Ed Engl ; 60(41): 22253-22259, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390105

RESUMO

Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.

4.
Small ; 16(49): e2005228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185338

RESUMO

Carbon nanodots (CDs) anchored onto inorganic supporter (amorphous nanosilica, SiO2 ) like a core-satellite structure have enhanced the room-temperature phosphorescence (RTP) intensity along with ultralong lifetime of 1.76 s. Special and quite stable structure should account for these superiorities, including hydrogen network, covalent bond, and trap-stabilized triplet-state excitons that are responsible for the generation of phosphorescence. These multiple effects have efficaciously protected CDs from being restrained by the external environment, providing such long-lived emission (LLE) that can subsist not only in powdery CDs-SiO2 but also coexist in aqueous solution, pushing a big step forward in the application prospects of liquid-state phosphorescence. Through construction of CDs-SiO2 compound, electron trap is reasoned between CDs and SiO2 by analyzing thermoluminescent glow curve. Electron trap can capture, store, and gradually release the electrons just like an electron transporter to improve the intersystem crossing (ISC) and reserved ISC, having provided the more stabilized triplet excitons, stronger and longer phosphorescence, and also triggered the formation of thermally activated delayed fluorescence (TADF), offering a new mechanism for exploiting LLE among CD-based field. Moreover, it is more beneficial to the formation of TADF as temperature increases, thus the afterglow color can change with the temperature.

5.
Opt Express ; 28(13): 19550-19561, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672229

RESUMO

C-dot-based composites with phosphorescence have been widely reported due to their attractive potential in various applications. But easy quenching of phosphorescence induced by oxygen or instability of matrices remained a tricky problem. Herein, we reported a Si-doped-CD (Si-CD)-based RTP materials with long lifetime by embedding Si-CDs in sulfate crystalline matrices. The resultant Si-CD@sulfate composites exhibited a long lifetime up to 1.07 s, and outstanding stability under various ambient conditions. The intriguing RTP phenomenon was attributed to the C = O bond and the doping of Si element due to the fact that sulfates could effectively stabilize the triplet states of Si-CDs, thus enabling the intersystem crossing (ISC). Meanwhile, we confirmed that the ISC process and phosphorescence emission could be effectively regulated based on the heavy atom effect. This research introduced a new perspective to develop materials with regulated RTP performance and high stability.

6.
ACS Omega ; 9(8): 9686-9701, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434871

RESUMO

The structure of coal seam fractures is the main physical property of coalbed methane reservoir evaluation, and the complex resistivity method is a potential geophysical evaluation method for coal seam fractures. In this study, cylindrical coal samples with axial directions perpendicular to the bedding, face cleat, and butt cleat were prepared. The complex electrical parameters of the loaded specimens were tested with test frequencies ranging from 1 Hz to 10 kHz. The complex electrical response characteristics of the loaded coal are summarized, and the control mechanism of the main fracture system structure is analyzed. The results indicated that (1) as the loading pressure increased, the resistance R and the absolute values of reactance X(|X|) gradually decreased, especially in the frequency band where R slowly decreased and the characteristic frequency of X, the decreased amplitude was more significant, and the cutoff frequency of R and the characteristic frequency of X all gradually increased. (2) The complex electrical properties of coal show obvious anisotropic characteristics. Both R and |X| decreased sequentially according to the direction perpendicular to the bedding, face cleat, and butt cleat; the cutoff frequency of R and the characteristic frequency of X all increased sequentially. (3) The dispersion phenomenon of the complex electrical properties of coal is attributed to the induced polarization; the elevated loading stress enhances the polarization effects of the molecular-induced moments of the coal skeleton, and the anisotropic difference of the complex electrical properties is due to the difficulty in the degree of transport of charged particles induced by structural differences of the main fracture system. (4) The resistance R3 and capacitance Xc were selected as the complex electrically sensitive parameters of the loaded coal orthogonal fracture structures. A logarithmic inversion model reflecting the main fracture system structure of coal was constructed. This provides a certain theoretical basis for efficient electrical exploration of coal reservoir fracture structures.

7.
ACS Nano ; 16(11): 18027-18037, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36342325

RESUMO

Nanotechnology is considered as an emerging effective means to augment plant photosynthesis. However, there is still a lot of work to be done in this field. Here, we applied the upconversion nanoparticles (UCNPs) on lettuce leaves and found that the UCNPs were able to transport into the lettuce body and colocalize with the chloroplasts. It was proved that UCNPs could harvest the near-infrared light of sunlight and increase the electron transfer rate in the photosynthesis process, thus increasing the photosynthesis rate. The gene expression analysis showed that more than 90% of gene expression in photosynthesis was upregulated. After spraying the UCNP solution on the leaves of lettuce and placing the lettuce under sunlight for 1 week, the wet/dry weight of the leaves increased by 53.33% and 45.71%, respectively. This nanoengineering of light-harvesting UCNPs may have great potential for applications in agriculture.


Assuntos
Nanopartículas , Raios Infravermelhos , Nanotecnologia , Fotossíntese
8.
Bioresour Technol ; 337: 125392, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34130232

RESUMO

To improve the utilization efficiency of corn stover , steam explosion pretreatment and cellulase/lactic acid bacteria-assisted ensilage storage were conducted in sequence, mainly focusing on morphological structure, lignocellulose fraction, cellulose accessibility and degradation profile. The results showed that there was a synergistic effect of steam explosion and ensilage storage, where hemicellulose of corn stover was partly degraded during steam explosion processing (70%) or ensilage storage (20-40%). Meanwhile, its morphological structure was apparently broken, increasing cellulose accessibility (2.44, 2.83, 4.08-4.33 mg/g), where enzyme YDL and inoculant QZB were the two most effective additives. Furthermore, rumen effective degradability of corn stover (39.25%, 48.33%, 52.57-54.07%) were increased along with greater rapid degradation fraction (0, 1.67%, 9.16-11.62%) and degradation rate of slow degradation fraction (0.020, 0.034, 0.039-0.048 h-1) . In conclusions, it is suggested that treating corn stover with steam explosion processing and ensilage storage is a feasible way to improve its utilization efficiency.


Assuntos
Celulase , Lactobacillales , Animais , Celulose , Hidrólise , Vapor , Zea mays
9.
ACS Omega ; 6(50): 34395-34405, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963925

RESUMO

The technique of high-voltage electrical pulses (HVEP) is a new method to enhance the permeability of coal seams and improve the efficiency of coalbed methane (CBM) exploitation. This paper is aimed at investigating the crack propagation characteristics of samples of different strengths, proposing the improved procedure of HVEP in field application, and proving that the electrohydraulic effect has a wide use in field application of CBM extraction. In this paper, an experimental system utilizing HVEP in water condition is established, coal samples with different strengths are crushed, and the extended processes of cracks are analyzed. According to the research results, the electrohydraulic effect has a good breakage on the coal; the number of main cracks is 2-3 and the length of the main cracks is about 30 cm in the vertical direction of the hard samples; and the formation of cracks is relevant to the discharge voltage, discharge times, and mechanical parameters of the samples. The results of scanning electron microscopy (SEM) demonstrate that the cracks and pore connectivity of the coal samples are improved obviously, and the permeability results show that the permeability of crushed coal samples is 20% greater than that of the raw coal sample. Meanwhile, the generation process of cracks can be divided into four periods: namely, fatigue damage accumulation, slow development, rapid development, and failure; the rapid development stage is the optimal phase in field application. Moreover, the shock wave produced by HVEP via electrohydraulic effect can crush the samples mainly; furthermore, the energy produced by bubble rupture also has a great influence on the formation of cracks. This study can provide a foundation for the HVEP to improve CBM exploitation.

10.
Bioresour Technol ; 337: 125437, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34320734

RESUMO

The anaerobic degradation of coal combined with straw biomass can promote the methane production. The biogas production potential and metabolic pathway were explored via the co-digestion simulation experiment of coal and corn straw. The results showed that 2 g of corn straw combined respectively with 4 g of bituminous coal A, 6 g of bituminous coal B and 4 g of bituminous coal C resulted in highest methane yields. The structure of lignocellulose in corn straw was partially degraded into guaiacyl and syringyl units. Meanwhile, the content of biodegradable tyrosine like protein and soluble microbial by-products in liquid phase significantly decreased. Significantly, the structure of archaea altered from aceticlastic to hydrogenotrophic methanogens when the fermentation substrate changed from high to low rank coal. The proportion of hydrogenotrophic methanogens was significantly higher than that of aceticlastic and methylotrophic methanogens, and the hydrogenotrophic pathway was dominant than the aceticlastic pathway.


Assuntos
Carvão Mineral , Zea mays , Anaerobiose , Biocombustíveis , Fermentação , Metano
11.
Front Oncol ; 11: 664346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221979

RESUMO

PURPOSE: In this study, total lesion glycolysis (TLG) on positron emission tomography images was estimated by a trained and validated CT radiomics model, and its prognostic ability was explored among lung cancer (LC) and esophageal cancer patients (EC). METHODS: Using the identical features between the combined and thin-section CT, the estimation model of SUVsum (summed standard uptake value) was trained from the lymph nodes (LNs) of LC patients (n = 1239). Besides LNs of LC patients from other centers, the validation cohorts also included LNs and primary tumors of LC/EC from the same center. After calculating TLG (accumulated SUVsum of each individual) based on the model, the prognostic ability of the estimated and measured values was compared and analyzed. RESULTS: In the training cohort, the model of 3 features was trained by the deep learning and linear regression method. It performed well in all validation cohorts (n = 5), and a linear regression could correct the bias from different scanners. Additionally, the absolute biases of the model were not significantly affected by the evaluated factors whether they included LN metastasis or not. Between the estimated natural logarithm of TLG (elnTLG) and the measured values (mlnTLG), significant difference existed among both LC (n = 137, bias = 0.510 ± 0.519, r = 0.956, P<0.001) and EC patients (n = 56, bias = 0.251± 0.463, r = 0.934, P<0.001). However, for both cancers, the overall shapes of the curves of hazard ratio (HR) against elnTLG or mlnTLG were quite alike. CONCLUSION: Total lesion glycolysis can be estimated by three CT features with particular coefficients for different scanners, and it similar to the measured values in predicting the outcome of cancer patients.

12.
Adv Mater ; 33(49): e2104872, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34647365

RESUMO

As one of the most promising fluorescent nanomaterials, the fluorescence of carbon dots (CDs) in solution is extensively studied. Nevertheless, the synthesis of multicolor solid-state fluorescence (SSF) CDs is rarely reported. Herein, CDs with multicolor aggregation-induced emission are prepared using amine molecules, all of them exhibiting dual fluorescence emission at 480 nm (Em-1) and 580-620 nm (Em-2), which is related to the SS bonds of dithiosalicylic acid and the conjugated structure attached to CO/CN bonds, respectively. As a strong electron-withdrawing group, the increase of CN content makes dual-fluorescent groups on the surface of CDs produce push and pull electrons, which determines intramolecular charge transfer (ICT) between the double emission. With the increase in CN content from 35.6% to 58.4%, the ICT efficiency increases from 8.71% to 45.94%, changing the fluorescence of CDs from green to red. The increase of ICT efficiency causes fluorescence quantum yield enhancement by nearly five times and redshift of the fluorescence peak. Finally, based on the multicolor luminescence properties induced by the aggregation of CDs, pattern encryption and white-LED devices are realized. Based on the fat solubility and strong ultraviolet absorption characteristics of CDs, fingerprint detection and leaf anti-UV hazards are applied.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Luminescência , Nitrogênio/química , Pontos Quânticos/química , Espectrometria de Fluorescência
13.
J Hazard Mater ; 410: 124534, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33221073

RESUMO

Carbon dots (CDs) with gradient-changed quantum yield (QY) were prepared by regulating the graphitic N and hydroxyl group contents. Then, the QY effect of CDs on plant photosynthesis was studied using chloroplasts and rice plants. After incubation for 2 h in the dark, CDs entered into the chloroplasts and converted ultraviolet radiation to photosynthetically active radiation. By this mechanism, CD1:0.2 (300 µg·mL-1) with a moderate QY of 46.42% significantly increased the photosynthetic activity of chloroplast (200 µg·mL-1) to reduce DCPIP and ferricyanide by 43.77% and 25.45%, respectively. After spraying on rice seedlings, CD1:0.2 (300 µg·mL-1) was evenly distributed in the leaves and resulted in maximum increases in the electron transport rate and photosynthetic efficiency of photosystem II by 29.81% and 29.88%, respectively. Furthermore, CD1:0.2 significantly increased the chlorophyll content and RuBisCO carboxylase activity of rice by 64.53% and 23.39%, respectively. Consequently, significant increases were observed in the growth of CD1:0.2-treated rice, including 18.99%, 64.31%, and 61.79% increases in shoot length, dry weights of shoot and root. These findings contribute to the exploitation of solar energy and agricultural production using CDs in the future.


Assuntos
Carbono , Raios Ultravioleta , Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Luz , Fotossíntese , Folhas de Planta
14.
Nanoscale ; 13(14): 6846-6855, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885485

RESUMO

The mechanism of the solvation-dependent multicolor luminescence of carbon dots (CDs) is not clear, despite the fact that multicolor luminescent CDs have important applications in many fields. In this article, we report solvated chromogenic CDs with productivity of up to 57%. The luminescence of the CD particles exhibits a regular redshift in N,N-dimethylformamide (DMF), ethanol, water, and acetic acid. The redshift of the CDs may be ascribed to the linking of the CD surfaces to the solvent through hydrogen bonds (HB). Different surface level states are formed by HB between the surfaces of the CDs and the solvent, and differences in dispersion states lead to different energy resonance transfer (ETR) efficiencies. The CDs/B2O3 composite exhibits excellent fluorescence thermal stability, and it has also been used to manufacture white-light-emitting devices with a high color rendering index of 87. Additionally, the excellent solvation effects of the CDs have application prospects in the detection of the water content in organic solvents. Finally, the CDs are used to realize cell imaging and positioning, which has significant application prospects in biological fields.

15.
Nanoscale ; 12(19): 10771-10780, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32391838

RESUMO

C-Dots and composites based on them face the challenges of poor stability, especially under photo-radiation, and low solid-state photoluminescence quantum yields (PLQYs), which hinder their application in optical devices. Herein, a novel 2-dimensional hybrid material of polysiloxane embedded with Si-doped carbon dots (P-E-Si-CDs) was synthesized by a self-assembly approach, and the hybrid composite exhibited broadband blue-green fluorescence emission, outstanding photostability, high thermal stability, and a high PLQY of 82.8%. Moreover, the dual fluorescent emissions were demonstrated the creation of two closed-loop fluorophores. Using the as-prepared hybrid fluorescent material, fabricated light-emitting diodes (LEDs) based on UV and blue-emitting LED chips present safe warm white light emission and adjustable white emission with a high color rendering index of up to 91, respectively. This work provides a novel strategy for the design and realization of Si-CD-based hybrid composites, thus promising their prospective use commercially in LED lighting.

16.
ACS Appl Mater Interfaces ; 12(30): 33575-33585, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32614165

RESUMO

Abiotic stress severely threatens agriculture. Herein, we studied the effect of heteroatom-free carbon dots (CDs) on the alleviation of abiotic stresses in rice for the first time. During in vitro coincubation, suspended rice cells were exposed to 2,4-dichlorophenoxyacetate sodium (2,4-D-Na, 30 µg mL-1), 2,4-dichlorophenoxyacetic acid (2,4-D, 5 µg mL-1), NaCl (0.15 mol·L-1), and high light (2000 Lux), both with and without CDs (100 µg mL-1). After a week, CDs significantly reduced the inhibition rate of 2,4-D-Na on the rice cell biomass from 48.16 to 27.44% and increased the biomass of rice cells exposed to 2,4-D, NaCl, and high light, by 4.12, 1.10, and 4.01 times that of the control (pure nutrient medium), respectively. Furthermore, the growth of CD-germinated rice seedlings was not obviously affected by 2,4-D-Na, 2,4-D, and NaCl. Further results showed that the CDs demonstrated an intrinsic free-radical scavenging property and could increase the peroxidase activity and the contents of phenolics and flavonoids in rice by 125.81, 39.60, and 47.63%, respectively. Furthermore, CDs improved the nutrient assimilation of rice cells under 2,4-D stress by 14.69%. With higher antioxidant capacity and sufficient nutrients, the CD-treated rice showed excellent resistance to abiotic stresses. This study suggested the great potential of CDs in protecting crops against abiotic stress.


Assuntos
Oryza/metabolismo , Substâncias Protetoras/farmacologia , Pontos Quânticos/química , Estresse Fisiológico/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Carbono/química , Flavonoides/química , Flavonoides/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Peroxidase/metabolismo , Fenóis/química , Fenóis/metabolismo , Substâncias Protetoras/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
17.
Front Oncol ; 10: 877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637354

RESUMO

Objective: The prognostic nutritional index (PNI) is a significant prognostic factor in diffuse large B cell lymphoma, follicular lymphoma, and other malignancies. The current study aimed to explore its prognostic role in extranodal natural killer/T cell lymphoma (ENKTL). Methods: Patients diagnosed with ENKTL and treated during 2002 and 2018 (n = 184) were retrospectively recruited. PNI was calculated from albumin concentration (g/L) and total lymphocyte count (*109/L). The association of PNI and overall survival (OS) or progression-free survival (PFS) was assessed in univariate analysis and multivariate Cox regression validated by the 10-fold cross-validation method. Results: Survival analyses showed that both OS and PFS differed significantly between PNI groups stratified by a cutoff value of 49.0. The 3- and 5-year OS were 42.5 and 36.3% in the low-PNI (PNI < 49) subgroup and 70.6% and 63.9% (P < 0.001) in the high-PNI (PNI ≥ 49) subgroup, respectively. The corresponding PFS showed a similar pattern (38.4, 32.4 vs. 64.8, 54.0%, P < 0.001). Multivariate analysis indicated that PNI was significantly independent for both OS (HR = 0.517, 95% CI = 0.322-0.831, P = 0.006) and PFS (HR = 0.579, 95% CI = 0.373-0.899, P = 0.015). Furthermore, integrating PNI into the models of IPI (International Prognostic Index), KPI (Korean Prognostic Index), and PINK (prognostic index of natural killer lymphoma) could improve the area under the curve (AUC) and reduce the integrated Brier score (IBS) and Akaike Information Criterion (AIC) value of each model. Conclusion: PNI was a significant prognostic indicator for ENKTL.

18.
iScience ; 23(6): 101241, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629608

RESUMO

As one of the most extensively cultivated crops, maize (Zea mays L.) has been extensively studied by researchers and breeders for over a century. With advances in high-throughput detection of various omics data, a wealth of multi-dimensional and multi-omics information has been accumulated for maize and its wild relative, teosinte. Integration of this information has the potential to accelerate genetic research and generate improvements in maize agronomic traits. To this end, we constructed ZEAMAP, a comprehensive database incorporating multiple reference genomes, annotations, comparative genomics, transcriptomes, open chromatin regions, chromatin interactions, high-quality genetic variants, phenotypes, metabolomics, genetic maps, genetic mapping loci, population structures, and populational DNA methylation signals within maize inbred lines. ZEAMAP is user friendly, with the ability to interactively integrate, visualize, and cross-reference multiple different omics datasets.

19.
J Colloid Interface Sci ; 543: 156-163, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797999

RESUMO

The combination of carbon dots (CDs) and rare-earth ions has attracted increasing attention due to their unique fluorescence properties. Herein, CDs are incorporated with NaYF4:Eu to form stable NaYF4:Eu@CDs nanocomposites by a simple sol-gel route. It has been demonstrated that CDs are successfully embedded in the silica layer outside NaYF4:Eu nanoparticles. These nanocomposites exhibit characteristic emissions of both CDs and NaYF4:Eu under a single excitation wavelength. By using their dual-emissive properties, the nanocomposites can act as ratiometric fluorescent sensor for selective detection of Fe3+ ions in the range of 0-350 µM. The temperature-dependent luminescent property of the nanocomposites makes them also suitable as thermometers in the range from 377 to 467 K. In addition, the luminescent color can be regularly adjusted by tuning the mass ratio of NaYF4:Eu to CDs. This combing strategy enables us to achieve dual emission of CDs and Eu3+ ions in nanocrystals, opening an avenue towards multifunctional applications in widespread fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA