Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 166(2): 363-373, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33206218

RESUMO

Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects. However, the role of miR-29a in IAV infection is unclear. In the present study, we investigated the effect of miR-29a on IAV infection and the mechanisms by which it functions. IAV infection was found to cause decreased miR-29a expression in lung epithelial A549 cells and mouse lungs. Overexpression of miR-29a reduced IAV mRNA and protein levels and progeny virus production in HEK293 and A549 cells. Inhibition of IAV infection by miR-29a was observed with different strains of IAV, including A/PR/8/34, A/WSN/1933, and clinical isolates A/OK/3052/09 and A/OK/309/06 H3N2. Knockout of miR-29a using CRISPR/Cas9 resulted in an increase in viral mRNA and protein levels, confirming that miR-29a suppresses IAV infection. A 3' untranslated region (3'-UTR) reporter assay showed that miR-29a had binding sites in the 3'-UTR of the Wnt-Ca2+ signaling receptor frizzled 5 gene, and overexpression of miR-29a reduced the level of the endogenous frizzled 5 protein. Wnt5a treatment of HEK293 and A549 cells enhanced IAV infection. Our results suggest that miR-29a inhibits IAV infection, probably via the frizzled 5 receptor.


Assuntos
Receptores Frizzled/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/genética , Influenza Humana/virologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Células A549 , Animais , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Cães , Feminino , Expressão Gênica/genética , Células HEK293 , Humanos , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia
2.
Biosci Biotechnol Biochem ; 85(4): 805-813, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686397

RESUMO

PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. ß-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.


Assuntos
Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timosina/fisiologia , Regulação para Cima , Apoptose/fisiologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Timosina/genética
3.
Med Chem Res ; 30(2): 387-398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456292

RESUMO

Herein we report our investigation concerning the development of Human neutrophil elastase (hNE) inhibitors for the treatment of Acute Respiratory Distress Syndrome (ARDS). Various benzenesulfonic acid derived compounds were synthesized and evaluated as competitive inhibitors of hNE. Biological screening revealed that compound 4f shows moderate inhibitory activity (IC50 = 35.2 µM) against hNE. Compound 4f was also superimposed onto the active center of hNE to understand the binding mode.

4.
J Cell Physiol ; 234(10): 18970-18984, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30916359

RESUMO

Traditional Chinese medicine (TCM) are both historically important therapeutic agents and important source of new drugs. Halofuginone (HF), a small molecule alkaloid derived from febrifugine, has been shown to exert strong antiproliferative effects that differ markedly among various cell lines. However, whether HF inhibits MCF-7 cell growth in vitro and underlying mechanisms of this process are not yet clear. Here, we offer the strong evidence of the connection between HF treatment, exosome production and proliferation of MCF-7 cells. Our results showed that HF inhibits MCF-7 cell growth in both time- and dose-dependent manner. Further microRNA (miRNA) profiles analysis in HF treated and nontreated MCF-7 cell and exosomes observed that six miRNAs are particularly abundant and sorted in exosomes. miRNAs knockdown experiment in exosomes and the MCF-7 growth inhibition assay showed that exosomal microRNA-31 (miR-31) modulates MCF-7 cells growth by specially targeting the histone deacetylase 2 (HDAC2), which increases the levels of cyclin-dependent kinases 2 (CDK2) and cyclin D1 and suppresses the expression of p21. In conclusion, these data indicate that inhibition of exosome production reduces exosomal miR-31, which targets the HDAC2 and further regulates the level of cell cycle regulatory proteins, contributing to the anticancer functions of HF. Our data suggest a new role for HF and the exosome production in tumorigenesis and may provide novel insights into prevention and treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Exossomos/genética , Histona Desacetilase 2/metabolismo , MicroRNAs/genética , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Células MCF-7 , Medicina Tradicional Chinesa
5.
J Cell Biochem ; 120(8): 13202-13215, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30891809

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the predominant form with the highest incidence. We aimed to find metastasis-related differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNA (mRNAs) in ESCC. We first obtained the lncRNAs, miRNAs, and mRNAs profiles. The differentially expressed lncRNAs, miRNAs, and mRNAs were obtained, followed by the functional annotation. Then the interaction networks of miRNA-mRNA, lncRNA-mRNA coexpression, lncRNA-miRNA, and lncRNA-miRNA-mRNA were constructed. In addition, systematic expression pattern analysis of differentially expressed lncRNAs, miRNA, and mRNA in the normal, metastasis, and nonmetastasis was performed. Survivability of differentially expressed lncRNAs, miRNAs, and mRNA was analyzed. A total of 613 differentially expressed lncRNAs, 35 differentially expressed miRNAs, and 1586 differentially expressed mRNAs were obtained. Several interactions of H19-hsa-mir-222-chromobox 2 (CBX2), H19-hsa-mir-330-phosphoinositide-3-kinase regulatory subunit 4 (PIK3R4), KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1)/CTB-89H12.4-hsa-mir-374a-vascular endothelial growth factor A (VEGFA), MALAT1/X inactive specific transcript (XIST)/XIST antisense RNA (TSIX)-hsa-mir-340-tumor necrosis factor receptor superfamily member 10A (NFRSF10A) were identified to play key roles in the metastasis of ESCC. In addition, KCNQ1OT1, TSIX, and XIST were significantly associated with the survival time of patients. In conclusion, our study may be helpful in understanding the pathological mechanism and providing new diagnostic and therapeutic biomarkers for ESCC.


Assuntos
Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Feminino , Humanos , Masculino , MicroRNAs/genética , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética
6.
Molecules ; 24(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795334

RESUMO

The frequent emergence of secondary infection and immunosuppression after porcine circovirus type 2 (PCV2) infection highlights the need to develop sensitive detection methods. A dual-signal amplification enzyme-linked immunosorbent assay (ELISA) based on a microplate coated with gold nanoparticle layers (GNPL) and tyramide signal amplification (TSA) was established. Results confirmed that the microplates coated with GNPL have a strong binding ability to the antibody without affecting the biological activity of the antibody. The microplates coated with GNPL have strong binding ability to the antibody, and the amplification of the tyramide signal is combined to further improve the sensitivity of PCV2. The PCV2 antibody does not crossreact with other viruses, demonstrating that the method has good specificity. A dual-signal amplification strategy is developed using microplates modified with GNPL and TSA to sensitively detect PCV2.


Assuntos
Anticorpos Antivirais/química , Circovirus/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Ensaio de Imunoadsorção Enzimática , Suínos
7.
Molecules ; 24(3)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736473

RESUMO

The antibiotic resistance of Salmonella has become increasingly serious due to the increased use of antibiotics, and antimicrobial peptides have been considered as an ideal antibiotic alternative. Salmonella can induce macrophage apoptosis and thus further damage the immune system. The antimicrobial peptide JH-3 has been shown to have a satisfactory anti-Salmonella effect in previous research, but its mechanism of action remains unknown. In this study, the effects of JH-3 on macrophages infected with Salmonella Typhimurium CVCC541 were evaluated at the cellular level. The results showed that JH-3 significantly alleviated the damage to macrophages caused by S. Typhi infection, reduced the release of lactic dehydrogenase (LDH), and killed the bacteria in macrophages. In addition, JH-3 decreased the phosphorylation level of p65 and the expression and secretion of interleukin 2 (IL-2), IL-6, and tumor necrosis factor-α (TNF-α) by inhibiting the activation of the mitogen-activated protein kinase (MAPK) (p38) signaling pathway and alleviating the cellular inflammatory response. From confocal laser scanning microscopy and flow cytometry assays, JH-3 was observed to inhibit the release of cytochrome c in the cytoplasm; the expression of TNF-αR2, caspase-9, and caspase-8; to further weaken caspase-3 activation; and to reduce the S.-Typhi-induced apoptosis of macrophages. In summary, the mechanism by which JH-3 inhibits Salmonella infection was systematically explored at the cellular level, laying the foundation for the development and utilization of JH-3 as a therapeutic alternative to antibiotics.


Assuntos
Anti-Infecciosos/farmacologia , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peptídeos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Anti-Infecciosos/química , Biomarcadores , Citocinas/genética , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/química , Células RAW 264.7 , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
8.
J Cell Biochem ; 119(5): 4009-4020, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29231257

RESUMO

Traditional Chinese medicines have been recognized as especially promising anticancer agents in modern anticancer research. Halofuginone (HF), an analog of quinazolinone alkaloid extracted from Dichroa febrifuga, is widely used in traditional medicine. However, whether HF inhibits the growth of breast cancer cells and/or reduces the migration and invasion of MCF-7 human breast cancer cells, as well as the underlying mechanisms in vitro, remains unclear. In this study, we report that an HF extract inhibits the growth of MCF-7 cells and reduces their migration and invasion, an important feature of potential anticancer agents. In addition, HF significantly increases the activation of autophagy, which is closely associated with tumor metastasis. As STMN1 and p53 have been closely implicated in breast cancer progression, we analyzed their expression in the context of HF extract treatment. Western blot analysis showed that HF suppresses STMN1 and p53 expression and activity in an autophagy-dependent manner. Collectively, these data indicate that activation of autophagy reduces expression of STMN1 and p53, and the migration and invasion of cancer cells contributes to the anti-cancer effects of the HF. These findings may provide new insight into breast cancer prevention and therapy.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Estatmina/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Piperidinas/química , Quinazolinonas/química
9.
Dig Dis Sci ; 63(9): 2285-2293, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29781054

RESUMO

BACKGROUND: This study was designed to explore the anticancer potential of isoalantolactone, a sesquiterpene lactone, on esophageal squamous cell carcinoma (ESCC) cells and associated molecular mechanisms. METHODS: ESCC cell lines were treated with isoalantolactone or vehicle and tested for viability, proliferation, cell cycle distribution, and apoptosis. Xenograft tumor studies in nude mice were done to examine the in vivo anticancer effect of isoalantolactone. RESULTS: Isoalantolactone treatment reduced ESCC cell viability and proliferation in vitro, which was coupled with induction of G0/G1 cell cycle arrest and apoptosis. In vivo studies confirmed the growth-suppressive effect of isoalantolactone on ESCC cells. Mechanistically, isoalantolactone reversed microRNA-21-mediated repression of programmed cell death 4 (PDCD4). Overexpression of microRNA-21 and knockdown of PDCD4 blocked the growth suppression and apoptosis induction by isoalantolactone in ESCC cells. CONCLUSIONS: Isoalantolactone shows growth-suppressive activity against ESCC cells, which is ascribed to upregulation of PDCD4 via downregulation of microRNA-21.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sesquiterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Molecules ; 23(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110916

RESUMO

With the overuse of antibiotics, multidrug-resistant bacteria pose a significant threat to human health. Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. This study examines the antimicrobial and membrane activity of HJH-1, a cationic peptide derived from the hemoglobin α-subunit of bovine erythrocytes P3. HJH-1 shows potent antimicrobial activity against different bacterial species associated with infection and causes weaker hemolysis of erythrocytes, at least five times the minimum inhibitory concentration (MIC). HJH-1 has good stability to tolerance temperature, pH value, and ionic strength. The anionic membrane potential probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and propidium iodide are used as indicators of membrane integrity. In the presence of HJH-1 (1× MIC), Escherichiacoli membranes rapidly depolarise, whereas red blood cells show gradual hyperpolarisation. Scanning electron microscopy and transmission electron micrographs show that HJH-1 (1× MIC) damaged the membranes of Escherichia coli, Staphylococcus aureus, and Candida albicans. In conclusion, HJH-1 damages the integrity of the bacterial membrane, preventing the growth of bacteria. HJH-1 has broad-spectrum antibacterial activity, and these activities are performed by changing the normal cell transmembrane potential and disrupting the integrity of the bacterial membrane.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , alfa-Globinas/química , Sequência de Aminoácidos , Animais , Anti-Infecciosos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Bovinos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Hemólise , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização por Electrospray , Temperatura , alfa-Globinas/síntese química
11.
Water Environ Res ; 89(4): 348-356, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28377004

RESUMO

Two kinds of hollow silica materials, namely H-SiS1 and H-SiS2, were synthesized using the yeast template method and the Pickering emulsion polymerization method, respectively. The adsorbents were synthesized to adsorb amoxicillin (AMX) from an aqueous environment. Characterization results indicated that hollow silica adsorbents exhibited excellent thermal stability even at temperatures above 700 °C. Several batches of static adsorption experiments were prepared to analyze the adsorption performance on AMX. Isotherm data on different adsorbents fitted well with the Langmuir model (from 15 °C to 35 °C), indicating a monolayer molecular adsorption mechanism for AMX. The maximum adsorption capacities of H-SiS1 and H-SiS2 were 8.40 and 3.46 mg/g at 35 °C, respectively. The adsorption kinetics was described well by the pseudo-second-order model, which indicated that chemical interactions were primarily responsible for AMX adsorption and could be the rate-limiting step during adsorption. These results suggested that H-SiS1 could be significantly useful as adsorbents for removal of AMX residuals from aqueous solution.


Assuntos
Amoxicilina/isolamento & purificação , Dióxido de Silício/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cinética , Microscopia Eletrônica de Varredura , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Termogravimetria
12.
Antimicrob Agents Chemother ; 59(5): 2835-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753638

RESUMO

With the emergence of many antibiotic-resistant strains worldwide, antimicrobial peptides (AMPs) are being evaluated as promising alternatives to conventional antibiotics. P3, a novel hemoglobin peptide derived from bovine erythrocytes, exhibited modest antimicrobial activity in vitro. We evaluated the antimicrobial activities of P3 and an analog, JH-3, both in vitro and in vivo. The MICs of P3 and JH-3 ranged from 3.125 µg/ml to 50 µg/ml when a wide spectrum of bacteria was tested, including multidrug-resistant strains. P3 killed bacteria within 30 min by disrupting the bacterial cytoplasmic membrane and disturbing the intracellular calcium balance. Circular dichroism (CD) spectrometry showed that P3 assumed an α-helical conformation in bacterial lipid membranes, which was indispensable for antimicrobial activity. Importantly, the 50% lethal dose (LD50) of JH-3 was 180 mg/kg of mouse body weight after intraperitoneal (i.p.) injection, and no death was observed at any dose up to 240 mg/kg body weight following subcutaneous (s.c.) injection. Furthermore, JH-3 significantly decreased the bacterial count and rescued infected mice in a model of mouse bacteremia. In conclusion, P3 and an analog exhibited potent antimicrobial activities and relatively low toxicities in a mouse model, indicating that they may be useful for treating infections caused by drug-resistant bacteria.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Eritrócitos/química , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Candida albicans/efeitos dos fármacos , Bovinos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
13.
Parasite ; 31: 37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963405

RESUMO

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Assuntos
Enterocytozoon , Fezes , Genótipo , Microsporidiose , Filogenia , Sciuridae , Animais , Sciuridae/microbiologia , Sciuridae/parasitologia , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Enterocytozoon/classificação , China/epidemiologia , Microsporidiose/veterinária , Microsporidiose/epidemiologia , Microsporidiose/microbiologia , Fezes/microbiologia , Fezes/parasitologia , Prevalência , Zoonoses , Reação em Cadeia da Polimerase/veterinária , DNA Fúngico/genética , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/microbiologia , Doenças dos Roedores/parasitologia , DNA Espaçador Ribossômico/genética , Animais Selvagens/microbiologia
14.
Asian J Surg ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604851

RESUMO

OBJECTIVE: To investigate the effectiveness of the original oblique conformal anastomosis presented in this research in reducing the incidence of cervical anastomotic leak after performing totally minimally invasive esophagectomy (TMIE). METHODS: The esophagus and stomach of 27 fresh pigs, termed the esophagogastric model, were used to simulate human esophagogastric organs for this study's in vitro experimental objectives. Nine esophagogastric models of similar weight were divided into three groups. Esophagogastrostomy with circular-stapled end-to-side anastomosis was performed. A tension gauge was used to pull the anastomosis, and the tension at which anastomotic leakage occurred was recorded. Furthermore, a retrospective assessment of 539 patients who underwent TMIE was conducted to analyze the influencing factors of cervical anastomotic leakage. RESULTS: Experiments on the esophagogastric models showed a higher fracture strength of oblique conformal anastomosis than that of conventional anastomosis (F2,18 = 40.86, P < 0.05), which was associated with a lower incidence of cervical anastomotic leakage (X2 = 9.0260, P = 0.0027). Retrospective analysis of 539 esophageal cancer patients who underwent TMIE showed that in contrast to conventional anastomosis, oblique conformal anastomosis was an independent protective factor against cervical anastomotic leakage (P = 0.0462, OR = 0.5872, 95% CI = 0.3497-0.9993). CONCLUSION: Oblique conformation anastomosis was stronger and involved a more prominent reduced risk of cervical anastomotic leakage than conventional anastomosis after TMIE.

15.
Front Microbiol ; 14: 1102789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760504

RESUMO

As a promising substitute for antibiotics, increasing attention has been given to the clinical application of antimicrobial peptides (AMPs). In this study, the mode of action of the HJH-3 against Salmonella Pullorum was investigated. The structure and properties of HJH-3 were examined in silico, and minimum inhibitory concentrations (MICs) were determined to evaluate its antimicrobial spectrum. The time-kill kinetics of HJH-3 was determined. The hemolytic activity of HJH-3 was determined by measuring the hemoglobin ultraviolet absorption value, and the cytotoxicity was determined using a CCK-8 kit. The protective effect of HJH-3 on chickens infected with S. Pullorum was evaluated in vivo. The results demonstrated that HJH-3 exhibited strong antibacterial activity against Gram-negative pathogens at MIC values of 1.5625-25 µg/mL and against Gram-positive pathogens at MIC values of 25-50 µg/mL. HJH-3 also showed activity against the Candida albicans (100 µg/mL) and Bacillus subtilis (6.25-12.5 µg/mL). HJH-3 at 100 µg/mL completely killed S. Pullorum after co-incubation for 6 h. Likewise, the hemolysis rate of CRBCs treated with 100 µg/mL HJH-3 (7.31%) was lower than that of CRBCs treated with 100 µg/mL pexiganan (40.43%). Although the hemolysis rate of CRBCs treated with 400 µg/mL HJH-3 was increased to 13.37%, it was much lower than that of 400 µg/mL pexiganan (57.27%). In regards to cytotoxicity, HJH-3 had almost no-effect on the CEF proliferation, pexiganan decreased CEFs proliferation from 56.93 to 31.00% when increasing the concentration from 50 to 200 µg/mL. In a chicken infection model, the results showed that the antibiotic prevention and HJH-3 prevention groups exhibited the best treatment effect, with the chickens being protected from the lethal dose of S. Pullorum, a decreased number of bacteria in the blood and spleen, and less pathological changes in intestinal segments. The prevention of infection by HJH-3 was similar to that by Ampicillin; the effect of treatment after infection was lower than that of treatment before infection, and the survival rate of infected chicks treated with HJH-3 was 70%, which was still higher than that of the infected chickens. These results suggest that HJH-3 has good clinical application potential and can be used as a substitute for antibiotics for the prevention and treatment of S. Pullorum infection.

16.
Protein J ; 42(5): 563-574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561256

RESUMO

Antimicrobial peptides (AMPs) are a kind of small molecular peptide that an organism produces to resist the invasion of foreign microorganisms. AMP BSN-37 is a bovine AMP that exhibits high antibacterial activity. In this paper, the optimized gene AMP BSN-37 was cloned into pCold-SUMO for fusion expression by recombinant DNA technology. The gene sequence of AMP BSN-37 was obtained by codons reverse translation, and the codons were optimized according to the codons preference of Escherichia coli (E. coli). The recombinant plasmid was constructed and identified by PCR, enzyme digestion and sequencing. Then the recombinant plasmid was transformed into BL21 E. coli to induce expression, and the IPTG concentration and time were optimized. The expressed soluble fusion protein SUMO-BSN-37 was purified by chromatography and then cleaved by SUMO proteases to release BSN-37. SDS-PAGE electrophoresis and Western blotting were used for identification. The recombinant plasmid pCold-SUMO-BSN-37 was obtained, and the fusion AMP BSN-37 was preliminarily expressed in BL21. After optimization, the optimal expression condition was 37 ℃ with 0.4 µM IPTG and 6 h incubation. Under optimal conditions, a large amount of fusion AMP BSN-37 was obtained by purification. Western blotting showed that the fusion peptide was successfully expressed and had good activity. The expressed BSN-37 showed antimicrobial activity similar to that of synthesized BSN-37. In this study, soluble expression products of AMP BSN-37 were obtained, and the problem regarding the limited source of AMP BSN-37 could be effectively solved, laying a foundation for further research on AMP BSN-37.


Assuntos
Peptídeos Antimicrobianos , Escherichia coli , Animais , Bovinos , Proteínas Recombinantes de Fusão/genética , Escherichia coli/genética , Isopropiltiogalactosídeo/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Peptídeos/metabolismo , Códon
17.
Probiotics Antimicrob Proteins ; 15(6): 1608-1625, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36626016

RESUMO

Bacteria have developed antibiotic resistance during the large-scale use of antibiotics, and multidrug-resistant strains are common. The development of new antibiotics or antibiotic substitutes has become an important challenge for humankind. MPX is a 14 amino acid peptide belonging to the MP antimicrobial peptide family. In this study, the antibacterial spectrum of the antimicrobial peptide MPX was first tested. The antimicrobial peptide MPX was tested for antimicrobial activity against the gram-positive bacterium S. aureus ATCC 25923, the gram-negative bacteria E. coli ATCC 25922 and Salmonella enterica serovar Typhimurium CVCC541, and the fungus Candida albicans ATCC 90029. The results showed that MPX had good antibacterial activity against the above four strains, especially against E. coli, for which the MIC was as low as 15.625 µg/mL. The study on the bactericidal mechanism of the antimicrobial peptide revealed that MPX can destroy the integrity of the cell membrane, increase membrane permeability, and change the electromotive force of the membrane, thereby allowing the contents to leak out and mediating bacterial death. A mouse acute infection model was used to evaluate the therapeutic effect of MPX after acute infection of subcutaneous tissue by S. aureus. The study showed that MPX could promote tissue repair in S. aureus infection and alleviate lung damage caused by S. aureus. In addition, skin H&E staining showed that MPX treatment facilitated the formation of appropriate abscesses at the subcutaneous infection site and facilitated the clearance of bacteria by the skin immune system. The above results show that MPX has good antibacterial activity and broad-spectrum antibacterial potential and can effectively prevent the invasion of subcutaneous tissue by S. aureus, providing new ideas and directions for the immunotherapy of bacterial infections.


Assuntos
Peptídeos Antimicrobianos , Staphylococcus aureus , Animais , Camundongos , Abscesso/tratamento farmacológico , Escherichia coli , Bactérias , Salmonella typhimurium , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
18.
Virol J ; 9: 141, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22856599

RESUMO

BACKGROUND: The regions in the middle of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) have been shown to be nonessential for PRRSV replication, and these nonessential regions are different in various viral strains. FINDING: In this study, the nonessential regions of the nsp2 of an attenuated vaccine strain (HuN4-F112) of highly pathogenic porcine reproductive and respiratory syndrome virus were identified based on an infectious cDNA clone of HuN4-F112. The results demonstrated that the segments of nsp2 [amino acids (aa) 480 to 667] tolerated deletions. Characterization of the mutants demonstrated that those with small deletions did not affect the viral growth on Marc-145 cells, but deletion of these regions led to earlier PRRSV replication increased (before 36 h after infectious in vitro). CONCLUSION: The functional roles of nsp2 variable middle region for PRRSV HuN4-F112 replication have been identified. Our results also suggested that none-essential region might be an ideal insertion region to express foreign gene in PRRSV genome.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Análise Mutacional de DNA , DNA Complementar/genética , DNA Viral/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vacinas Atenuadas/genética
19.
J Immunol Res ; 2022: 5819295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669102

RESUMO

MicroRNA-328-3p (miR-328-3p) plays a critical role in mediating the progression of multiple types of cancers. To date, no study has concentrated on the molecular mechanism of miR-328-3p in mediating stomach adenocarcinoma (STAD). In this study, it was found that miR-328-3p was downregulated in STAD, and inhibition of miR-328-3p significantly promoted the growth, migration, invasion, and stemness of STAD cells, while miR-328-3p overexpression exerted reverse effects. Through bioinformatics analysis, it was uncovered that a cluster of differentiation 44 (CD44) was upregulated in STAD and closely associated with the prognosis of STAD patients. Mechanistically, we identified CD44 as the target gene of miR-328-3p. Notably, knockdown of CD44 abolished the promoting function of miR-328-3p inhibitor in the development of STAD. Moreover, myeloid zinc finger protein 1 (MZF1) was confirmed as an upstream transcription factor for miR-328-3p, which is involved in enhancing miR-328-3p expression. In addition, the role of MZF1 downregulation in the malignant traits of STAD cells was blocked by miR-328-3p overexpression. More importantly, upregulation of miR-328-3p efficiently suppressed STAD tumor growth in vivo. Collectively, our findings illustrated that MZF1-mediated miR-328-3p acted as a cancer suppressor in STAD progression via regulation of CD44, which suggested the possibility of the MZF1/miR-328-3p/CD44 axis as a novel promising therapeutic candidate for STAD.


Assuntos
Adenocarcinoma , MicroRNAs , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/patologia
20.
RSC Adv ; 12(23): 14485-14491, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702236

RESUMO

To explore the potential intracellular mechanism of the antimicrobial peptide HJH-3 in killing Salmonella, a DNA blocking test and scanning electron microscopy (SEM) were used to determine the ability of the peptide to bind bacterial DNA in vitro. Laser confocal analysis and electron microscopy were used to observe the binding of antimicrobial peptide HJH-3 and Salmonella DNA, and flow cytometry was used to analyze the effect of antimicrobial peptides on cell division in vivo. The results showed that HJH-3 can bind to DNA to block the diffusion and migration of DNA in agarose gel. Laser confocal microscopy revealed that antimicrobial peptide HJH-3 penetrated the bacterial cell membrane and bound with bacterial DNA. Transmission electron microscopy showed that antimicrobial peptide HJH-3 aggregated in the nucleoid of Salmonella cells, and through a channel in the membrane destroyed by the antimicrobial peptide, DNA and other intracellular contents were excreted, and polymerized DNA was fragmented. The results of the flow cytometry analysis confirmed that the death rate of Salmonella increased significantly after exposure to antimicrobial peptide HJH-3 and increased with increasing antimicrobial peptide concentration. These results suggest that AMP HJH-3 may be a candidate antimicrobial agent to treat infectious diseases caused by Salmonella pullorum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA