Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Acta Pharmacol Sin ; 43(2): 483-493, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33907306

RESUMO

The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
2.
BMC Plant Biol ; 21(1): 558, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814832

RESUMO

BACKGROUND: Zingiberoideae is a large and diverse subfamily of the family Zingiberaceae. Four genera in subfamily Zingiberoideae each possess 50 or more species, including Globba (100), Hedychium (> 80), Kaempferia (50) and Zingiber (150). Despite the agricultural, medicinal and horticultural importance of these species, genomic resources and suitable molecular markers for them are currently sparse. RESULTS: Here, we have sequenced, assembled and analyzed ten complete chloroplast genomes from nine species of subfamily Zingiberoideae: Globba lancangensis, Globba marantina, Globba multiflora, Globba schomburgkii, Globba schomburgkii var. angustata, Hedychium coccineum, Hedychium neocarneum, Kaempferia rotunda 'Red Leaf', Kaempferia rotunda 'Silver Diamonds' and Zingiber recurvatum. These ten chloroplast genomes (size range 162,630-163,968 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 87,172-88,632 bp), a small single copy (SSC, 15,393-15,917 bp) and a pair of inverted repeats (IRs, 29,673-29,833 bp). The genomes contain 111-113 different genes, including 79 protein coding genes, 28-30 tRNAs and 4 rRNA genes. The dynamics of the genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats exhibit similarities, with slight differences observed among the ten genomes. Further comparative analysis of seventeen related Zingiberoideae species, 12 divergent hotspots are identified. Positive selection is observed in 14 protein coding genes, including accD, ccsA, ndhA, ndhB, psbJ, rbcL, rpl20, rpoC1, rpoC2, rps12, rps18, ycf1, ycf2 and ycf4. Phylogenetic analyses, based on the complete chloroplast-derived single-nucleotide polymorphism data, strongly support that Globba, Hedychium, and Curcuma I + "the Kaempferia clade" consisting of Curcuma II, Kaempferia and Zingiber, form a nested evolutionary relationship in subfamily Zingiberoideae. CONCLUSIONS: Our study provides detailed information on ten complete Zingiberoideae chloroplast genomes, representing a valuable resource for future studies that seek to understand the molecular evolutionary dynamics in family Zingiberaceae. The identified divergent hotspots can be used for development of molecular markers for phylogenetic inference and species identification among closely related species within four genera of Globba, Hedychium, Kaempferia and Zingiber in subfamily Zingiberoideae.


Assuntos
Evolução Biológica , Evolução Molecular , Variação Genética , Genoma de Cloroplastos , Análise de Sequência de Proteína , Zingiberaceae/genética , China , Filogenia
3.
Acta Pharmacol Sin ; 42(3): 482-490, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32581257

RESUMO

TPN729 is a novel phosphodiesterase 5 (PDE5) inhibitor used to treat erectile dysfunction in men. Our previous study shows that the plasma exposure of metabolite M3 (N-dealkylation of TPN729) in humans is much higher than that of TPN729. In this study, we compared its metabolism and pharmacokinetics in different species and explored the contribution of its main metabolite M3 to pharmacological effect. We conducted a combinatory approach of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry-based metabolite identification, and examined pharmacokinetic profiles in monkeys, dogs, and rats following TPN729 administration. A remarkable species difference was observed in the relative abundance of major metabolite M3: i.e., the plasma exposure of M3 was 7.6-fold higher than that of TPN729 in humans, and 3.5-, 1.2-, 1.1-fold in monkeys, dogs, and rats, respectively. We incubated liver S9 and liver microsomes with TPN729 and CYP3A inhibitors, and demonstrated that CYP3A was responsible for TPN729 metabolism and M3 formation in humans. The inhibitory activity of M3 on PDE5 was 0.78-fold that of TPN729 (The IC50 values of TPN729 and M3 for PDE5A were 6.17 ± 0.48 and 7.94 ± 0.07 nM, respectively.). The plasma protein binding rates of TPN729 and M3 in humans were 92.7% and 98.7%, respectively. It was astonishing that the catalyzing capability of CYP3A4 in M3 formation exhibited seven-fold disparity between different species. M3 was an active metabolite, and its pharmacological contribution was equal to that of TPN729 in humans. These findings provide new insights into the limitation and selection of animal model for predicting the clinical pharmacokinetics of drug candidates metabolized by CYP3A4.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores da Fosfodiesterase 5/metabolismo , Pirimidinonas/metabolismo , Sulfonamidas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/farmacocinética , Cães , Humanos , Macaca fascicularis , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Inibidores da Fosfodiesterase 5/sangue , Inibidores da Fosfodiesterase 5/farmacocinética , Pirimidinonas/sangue , Pirimidinonas/farmacocinética , Ratos Sprague-Dawley , Especificidade da Espécie , Sulfonamidas/sangue , Sulfonamidas/farmacocinética
4.
Acta Pharmacol Sin ; 41(12): 1531-1538, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33060777

RESUMO

G protein-coupled receptors (GPCRs) play important roles in human physiology. GPCRs are involved in immunoregulation including regulation of the inflammatory response. Chemotaxis of phagocytes and lymphocytes is mediated to a great extent by the GPCRs for chemoattractants including myriads of chemokines. Accumulation and activation of phagocytes at the site of inflammation contribute to local inflammatory response. A handful of GPCRs have been found to transduce anti-inflammatory signals that promote resolution of inflammation. These GPCRs interact with selected metabolites of arachdonic acid, such as lipoxins, and of omega-3 essential fatty acids, such as resolvins and protectins. Despite mounting evidence for the in vivo functions of these anti-inflammatory and pro-resolving ligands paired with their respective GPCRs, the underlying signaling mechanisms have not been fully delineated. The present review summarizes what we have learned about these GPCRs, their structures and signaling pathways and the prospect of targeting these receptors for novel anti-inflammatory therapies.


Assuntos
Imunomodulação/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Humanos , Lipoxinas/metabolismo , Simulação de Acoplamento Molecular , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
5.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32737471

RESUMO

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus , Medicamentos de Ervas Chinesas , Flavanonas , Flavonoides , Pandemias , Pneumonia Viral , Replicação Viral/efeitos dos fármacos , Administração Oral , Animais , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ensaios Enzimáticos , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral/fisiologia
6.
Acta Pharmacol Sin ; 39(2): 177-183, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28836584

RESUMO

Amyloid precursor protein (APP) and iron both play pivotal roles in the central nervous system, but whether and how iron influences the processing of endogenous APP in neurons remain unclear. Here, we investigated the regulatory effects and underlying mechanisms of iron on non-amyloidogenic and amyloidogenic processing of APP in rat primary cortical neurons. Treatment of the neurons with ferric ammonium citrate (FAC, 100 µmol/L) markedly facilitated the non-amyloidogenic processing of APP, as evidenced by a robust increase in α-secretase-derived carboxy-terminal fragment α (CTFα). Furthermore, the distribution of sAPPα was altered after iron treatment, and sAPPα remained in the cellular lysates instead of being secreted into the extracellular milieu. Moreover, the levels of APP amyloidogenic products, including sAPPß and Aß were both decreased. We further revealed that FAC did not alter the expression of ß-secretase, but significantly suppressed its enzymatic activity in iron-treated neurons. In a cell-free ß-secretase activity assay, FAC dose-dependently inhibited the activity of purified ß-secretase with an IC50 value of 21.67 µmol/L. Our data provide the first evidence that iron overload alters the neuronal sAPPα distribution and directly inhibits ß-secretase activity. These findings shed light on the regulatory mechanism of bio-metals on APP processing.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Córtex Cerebral/metabolismo , Compostos Férricos/farmacologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Compostos de Amônio Quaternário/farmacologia , Animais , Oligopeptídeos/farmacologia , Ratos Sprague-Dawley
7.
Acta Pharmacol Sin ; 38(1): 56-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27641734

RESUMO

CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction between the GAIN and EGF5 domains accounting for the absence of expression of the GAIN domain itself, although EGF5-GAIN was expressed similarly in the wild-type protein. For HeLa cell adhesion, the GAIN-truncated forms showed dramatically reduced binding affinity. The PNGase F-deglycosylated and GPS mutated forms also exhibited reduced HeLa attachment compared with WT CD97. However, neither N-glycosylation mutagenesis nor auto-proteolysis inhibition caused by N-glycosylation mutagenesis affected CD97-HeLa cell interactions. A comparison of the HeLa binding affinities of PNGase F-digested, GPS-mutated and N-glycosylation-mutated CD97 samples revealed diverse findings, suggesting that the functions of CD97 ECD were complex, and various technologies for function validation should be utilized to avoid single-approach bias when investigating N-glycosylation and auto-proteolysis of CD97. A unique mechanism of concentration-dependent auto-proteolysis of the CD97 EGF1-5 isoform was characterized, suggesting an intermolecular mechanism that is distinct from that of other previously reported CD97 isoforms. The EGF5 and GAIN domains are likely associated with each other as CD97 expression and SAXS data revealed a potential interaction between the two domains. Finally, the GAIN and EGF domains are also important for CD97-HeLa adhesion, whereas N-glycosylation of the CD97 GAIN domain and GPS auto-proteolysis are not required for HeLa cell attachment.


Assuntos
Antígenos CD/metabolismo , Adesão Celular/fisiologia , Proteólise , Antígenos CD/genética , Glicosilação , Células HeLa , Humanos , Modelos Estruturais , Mutagênese , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G
8.
Acta Pharmacol Sin ; 37(7): 984-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27238211

RESUMO

AIM: Fragment-based lead discovery (FBLD) is a complementary approach in drug research and development. In this study, we established an NMR-based FBLD platform that was used to screen novel scaffolds targeting human bromodomain of BRD4, and investigated the binding interactions between hit compounds and the target protein. METHODS: 1D NMR techniques were primarily used to generate the fragment library and to screen compounds. The inhibitory activity of hits on the first bromodomain of BRD4 [BRD4(I)] was examined using fluorescence anisotropy binding assay. 2D NMR and X-ray crystallography were applied to characterize the binding interactions between hit compounds and the target protein. RESULTS: An NMR-based fragment library containing 539 compounds was established, which were clustered into 56 groups (8-10 compounds in each group). Eight hits with new scaffolds were found to inhibit BRD4(I). Four out of the 8 hits (compounds 1, 2, 8 and 9) had IC50 values of 100-260 µmol/L, demonstrating their potential for further BRD4-targeted hit-to-lead optimization. Analysis of the binding interactions revealed that compounds 1 and 2 shared a common quinazolin core structure and bound to BRD4(I) in a non-acetylated lysine mimetic mode. CONCLUSION: An NMR-based platform for FBLD was established and used in discovery of BRD4-targeted compounds. Four potential hit-to-lead optimization candidates have been found, two of them bound to BRD4(I) in a non-acetylated lysine mimetic mode, being selective BRD4(I) inhibitors.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular , Polarização de Fluorescência , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
9.
Acta Pharmacol Sin ; 36(3): 298-310, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25661317

RESUMO

AIM: Paeoniflorin from Chinese herb Paeoniae Radix has been shown to ameliorate middle cerebral artery occlusion-induced ischemia in rats. The aim of this study was to investigate the mechanisms underlying the neuroprotective action of PF in cultured rat cortical neurons. METHODS: Primary cultured cortical neurons of rats were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) insult. Cell survival was determined using MTT assay. HEK293 cells stably transfected with A1R (HEK293/A1R) were used for detailed analysis. Phosphorylation of the signaling proteins was evaluated by Western blot or immunoprecipitation. Receptor interactions were identified using co-immunoprecipitation and immunofluorescence staining. RESULTS: Paeoniflorin (10 nmol/L to 1 µmol/L) increased the survival of neurons subjected to OGD/R. Furthermore, paeoniflorin increased the phosphorylation of Akt and ERK1/2 in these neurons. These effects were blocked by PI3K inhibitor wortmannin or MEK inhibitor U0126. Paeoniflorin also increased the phosphorylation of Akt and ERK1/2 in HEK293/A1R cells. Both A1R antagonist DPCPX and EGFR inhibitor AG1478 not only blocked paeoniflorin-induced phosphorylation of ERK1/2 and Akt in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. In addition, paeoniflorin increased the phosphorylation of Src kinase and activation of MMP-2 in HEK293/A1R cells. Both Src inhibitor PP2 and MMP-2/MMP-9 inhibitor BiPs not only blocked paeoniflorin-induced phosphorylation of ERK1/2 (and Akt) in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. CONCLUSION: Paeoniflorin promotes the survival of cultured cortical neurons by increasing Akt and ERK1/2 phosphorylation via A1R-mediated transactivation of EGFR.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Receptores ErbB/efeitos dos fármacos , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Degeneração Neural , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Citoproteção , Relação Dose-Resposta a Droga , Ativação Enzimática , Receptores ErbB/metabolismo , Idade Gestacional , Células HEK293 , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Quinases da Família src/metabolismo
10.
Fitoterapia ; 173: 105780, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135092

RESUMO

In this study, 16 new ent-labdane-type diterpene glycosides, designated as goshonosides J1-J16 (1-16), along with nine previously known diterpene glycosides (17-25) were extracted from the fruits of Rubus chingii Hu. The structures of goshonosides J1-J16 were elucidated using various analytical techniques, such as nuclear magnetic resonance, electron capture detector ECD, high-resolution electrospray ionization mass spectrometry HREIMS, single-crystal X-ray diffraction, and hydrolysis. Furthermore, the isolates' efficacy in inhibiting the activity of phosphodiesterase type 5 A was evaluated. Goshonosides J1, J2, and G effectively inhibited the activity of the aforementioned enzyme (IC50 values: 6.15 ± 1.76, 3.27 ± 0.65, and 9.61 ± 2.36 µM, respectively). Our findings highlight the remarkable structural diversity of bioactive compounds in R. chingii Hu and offer insights into the use of this shrub.


Assuntos
Diterpenos , Rubus , Rubus/química , Estrutura Molecular , Glicosídeos/farmacologia , Glicosídeos/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Diterpenos/farmacologia
11.
Acta Pharmacol Sin ; 34(9): 1243-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770985

RESUMO

AIM: To study the conformational changes of Aß42 and discover novel inhibitors of both Aß42 aggregation and ß-secretase (BACE1). METHODS: A molecular dynamics (MD) simulation at a microsecond level was performed to explore stable conformations of Aß42 monomer in aqueous solution. Subsequently, structure-based virtual screening was used to search for inhibitors of both Aß42 aggregation and BACE1. Protein purification and in vitro activity assays were performed to validate the inhibition of the compounds identified via virtual screening. RESULTS: The initial α-helical conformation of Aß42, which was unstable in aqueous solution, turned into a ß-sheet mixed with a coil structure through a transient and fully random coil. The conformation of Aß42 mainly comprising ß-sheets and coils structure was used for further virtual screening. Five compounds were identified as inhibitors for Aß42 aggregation, and one of them, AE-848, was discovered to be a dual inhibitor of both Aß42 aggregation and BACE1, with IC50 values of 36.95 µmol/L and 22.70 µmol/L, respectively. CONCLUSION: A helical to ß-sheet conformational change in Aß42 occurred in a 1.8 microsecond MD simulation. The resulting ß-sheet structure of the peptide is an appropriate conformation for the virtual screening of inhibitors against Aß42 aggregation. Five compounds were identified as inhibitors of Aß42 aggregation by in vitro activity assays. It was particularly interesting to discover a dual inhibitor that targets both Aß42 aggregation and BACE1, the two crucial players in the pathogenesis of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Fragmentos de Peptídeos/metabolismo , Fatores de Tempo
12.
Acta Pharmacol Sin ; 34(3): 441-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334237

RESUMO

AIM: To design and synthesize bivalent ligands for adenosine A1-dopamine D1 receptor heteromers (A1-D1R), and evaluate their pharmacological activities. METHODS: Bivalent ligands and their corresponding A1R monovalent ligands were designed and synthesized. The affinities of the bivalent ligands for A1R and D1R in rat brain membrane preparation were examined using radiolabeled binding assays. To demonstrate the formation of A1-D1R, fluorescence resonance energy transfer (FRET) was conducted in HEK293 cells transfected with D1-CFP and A1-YFP. Molecular modeling was used to analyze the possible mode of protein-protein and protein-ligand interactions. RESULTS: Two bivalent ligands for A1R and D1R (20a, 20b), as well as the corresponding A1R monovalent ligands (21a, 21b) were synthesized. In radiolabeled binding assays, the bivalent ligands showed affinities for A1R 10-100 times higher than those of the corresponding monovalent ligands. In FRET experiments, the bivalent ligands significantly increased the heterodimerization of A1R and D1R compared with the corresponding monovalent ligands. A heterodimer model with the interface of helixes 3, 4, 5 of A1R and helixes 1, 6, 7 from D1R was established with molecular modeling. The distance between the two ligand binding sites in the heterodimer model was approximately 48.4 Å, which was shorter than the length of the bivalent ligands. CONCLUSION: This study demonstrates the existence of A1-D1R in situ and a simultaneous interaction of bivalent ligands with both the receptors.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Agonistas de Dopamina/farmacologia , Desenho de Fármacos , Multimerização Proteica , Receptor A1 de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Animais , Ligação Competitiva , Encéfalo/metabolismo , Agonistas de Dopamina/síntese química , Agonistas de Dopamina/química , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Ratos , Ratos Wistar , Receptor A1 de Adenosina/química , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/química , Relação Estrutura-Atividade
13.
Yao Xue Xue Bao ; 48(1): 14-24, 2013 Jan.
Artigo em Zh | MEDLINE | ID: mdl-23600136

RESUMO

As an extension of the structure-based drug discovery, fragment-based drug discovery is matured increasingly, and plays an important role in drug development. Fragments in a small library, with lower molecular mass and high "ligand efficiency", are detected by SPR, MS, NMR, X-ray crystallography technologies and other biophysical methods. Then they are considered as starting points for chemical optimization with the guidance of structural biology methods to get good "drug-like" lead and candidate compounds. In this article, we reviewed the current progress of fragment-based drug discovery and detailed a number of examples to illustrate the novel strategies.


Assuntos
Descoberta de Drogas/métodos , Fragmentos de Peptídeos/síntese química , Desenho Assistido por Computador , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/química , Conformação Proteica , Bibliotecas de Moléculas Pequenas , Ressonância de Plasmônio de Superfície
14.
Eur J Pharm Sci ; 191: 106598, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783378

RESUMO

Safe and efficacious antiviral therapeutics are in urgent need for the treatment of coronavirus disease 2019. Simnotrelvir is a selective 3C-like protease inhibitor that can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated the safety, tolerability, and pharmacokinetics of dose escalations of simnotrelvir alone or with ritonavir (simnotrelvir or simnotrelvir/ritonavir) in healthy subjects, as well as the food effect (ClinicalTrials.gov Identifier: NCT05339646). The overall incidence of adverse events (AEs) was 22.2% (17/72) and 6.3% (1/16) in intervention and placebo groups, respectively. The simnotrelvir apparent clearance was 135-369 L/h with simnotrelvir alone, and decreased significantly to 19.5-29.8 L/h with simnotrelvir/ritonavir. The simnotrelvir exposure increased in an approximately dose-proportional manner between 250 and 750 mg when co-administered with ritonavir. After consecutive twice daily dosing of simnotrelvir/ritonavir, simnotrelvir had a low accumulation index ranging from 1.39 to 1.51. The area under the curve of simnotrelvir increased 44.0 % and 47.3 % respectively, after high fat and normal diet compared with fasted status. In conclusion, simnotrelvir has adequate safety and tolerability. Its pharmacokinetics indicated a trough concentration above the level required for 90 % inhibition of SARS-CoV-2 in vitro at 750 mg/100 mg simnotrelvir/ritonavir twice daily under fasted condition, supporting further development using this dosage as the clinically recommended dose regimen.


Assuntos
COVID-19 , Inibidores de Proteases , Adulto , Humanos , Antivirais/efeitos adversos , Inibidores Enzimáticos , Voluntários Saudáveis , Inibidores de Proteases/efeitos adversos , Ritonavir/uso terapêutico , SARS-CoV-2
15.
Acta Pharmacol Sin ; 33(12): 1459-68, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22842730

RESUMO

AIM: To identify a small molecule L655,240 as a novel ß-secretase (BACE1) inhibitor and to investigate its effects on ß-amyloid (Aß) generation in vitro. METHODS: Fluorescence resonance energy transfer (FRET) was used to characterize the inhibitory effect of L655,240 on BACE1. Surface plasmon resonance (SPR) technology-based assay was performed to study the binding affinity of L655,240 for BACE1. The selectivity of L655,240 toward BACE1 over other aspartic proteases was determined with enzymatic assay. The effects of L655,240 on Aß40, Aß42, and sAPPß production were studied in HEK293 cells stably expressing APP695 Swedish mutant(K595N/M596L) (HEK293-APPswe cells). The activities of BACE1, γ-secretase and α-secretase were assayed, and both the mRNA and protein levels of APP and BACE1 were evaluated using real-time PCR (RT-PCR) and Western blot analysis. RESULTS: L655,240 was determined to be a competitive, selective BACE1 inhibitor (IC(50)=4.47±1.37 µmol/L), which bound to BACE1 directly (K(D)=17.9±0.72 µmol/L). L655,240 effectively reduced Aß40, Aß42, and sAPPß production by inhibiting BACE1 without affecting the activities of γ-secretase and α-secretase in HEK293-APPswe cells. L655,240 has no effect on APP and BACE1 mRNA or protein levels in HEK293-APPswe cells. CONCLUSION: The small molecule L655,240 is a novel BACE1 inhibitor that can effectively decreases Aß production in vitro, thereby highlighting its therapeutic potential for the treatment of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Indóis/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/biossíntese , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Proteases/antagonistas & inibidores , Ligação Competitiva , Western Blotting , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Indóis/química , Estrutura Molecular , Fragmentos de Peptídeos/biossíntese , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ressonância de Plasmônio de Superfície , Transfecção
16.
PhytoKeys ; 176: 33-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958937

RESUMO

A new species of the genus Tigridiopalma, formerly considered monotypic, is here described as T. exalata and illustrated based on molecular and morphological evidence. It is morphologically similar to T. magnifica in having a short stem, huge basal leaves, scorpioid cymes, and 5-merous flowers, but differs in having ribbed and pale yellow puberulent petioles, purple petals with a small white apical patch, connectives of longer stamens with a distinct dorsal short spur at their base, and wingless capsules. Due to the restricted distribution, small populations and horticultural potential of this new species, it should be categorized as an Endangered species (EN).

17.
Mitochondrial DNA B Resour ; 6(1): 161-163, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33537428

RESUMO

Camellia rhytidophylla is an endangered plant with economic value. Using Illumina sequencing, the chloroplast genome of C. rhytidophylla was sequenced and analyzed in this study. The complete chloroplast genome is 157,073 bp in length, which consisted of a pair of inverted repeat regions of 26,055 bp (IRa and IRb) separated by a large single-copy region (LSC) of 86,680 bp and a small single-copy region (SSC) of 18,283 bp. The C. rhytidophylla chloroplast genome encodes 135 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 3 pseudogenes. Sequence comparison analysis with the chloroplast sequences of 28 other Camellia plants found that C. rhytidophylla had the closest relationship with C. szechuanensis. This study provides a theoretical basis for the analysis of the distant relationship of Camellia.

18.
Mitochondrial DNA B Resour ; 6(1): 247-249, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33553635

RESUMO

Camellia chuongtsoensis is an evergreen shrub with a single-petaled flower and golden yellow color. The complete chloroplast genome of C. chuongtsoensis was sequenced and analyzed in this study by Illumina sequencing. The chloroplast genome is 156,504 bp in length with a quadripartite structure containing a large single copy (LSC) region of 86,215 bp, a small single copy (SSC) region of 18,253 bp, and a pair of inverted repeat regions of 26,018 bp (IRa and IRb). The chloroplast genome of C. chuongtsoensis encodes 135 genes, comprising 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 3 pseudogenes.

19.
PLoS One ; 15(7): e0236590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735595

RESUMO

Zingiber montanum (Z. montanum) and Zingiber zerumbet (Z. zerumbet) are important medicinal and ornamental herbs in the genus Zingiber and family Zingiberaceae. Chloroplast-derived markers are useful for species identification and phylogenetic studies, but further development is warranted for these two Zingiber species. In this study, we report the complete chloroplast genomes of Z. montanum and Z. zerumbet, which had lengths of 164,464 bp and 163,589 bp, respectively. These genomes had typical quadripartite structures with a large single copy (LSC, 87,856-89,161 bp), a small single copy (SSC, 15,803-15,642 bp), and a pair of inverted repeats (IRa and IRb, 29,393-30,449 bp). We identified 111 unique genes in each chloroplast genome, including 79 protein-coding genes, 28 tRNAs and 4 rRNA genes. We analyzed the molecular structures, gene information, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats (SSRs) and long repeats from the two chloroplast genomes. A comparison of the Z. montanum and Z. zerumbet chloroplast genomes detected 489 single-nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). Thirteen highly divergent regions, including ycf1, rps19, rps18-rpl20, accD-psaI, psaC-ndhE, psbA-trnK-UUU, trnfM-CAU-rps14, trnE-UUC-trnT-UGU, ccsA-ndhD, psbC-trnS-UGA, start-psbA, petA-psbJ, and rbcL-accD, were identified and might be useful for future species identification and phylogeny in the genus Zingiber. Positive selection was observed for ATP synthase (atpA and atpB), RNA polymerase (rpoA), small subunit ribosomal protein (rps3) and other protein-coding genes (accD, clpP, ycf1, and ycf2) based on the Ka/Ks ratios. Additionally, chloroplast SNP-based phylogeny analyses found that Zingiber was a monophyletic sister branch to Kaempferia and that chloroplast SNPs could be used to identify Zingiber species. The genome resources in our study provide valuable information for the identification and phylogenetic analysis of the genus Zingiber and family Zingiberaceae.


Assuntos
Genoma de Cloroplastos/genética , Genômica , Filogenia , Zingiberaceae/genética , Códon/genética , Mutação INDEL , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Edição de RNA
20.
Mitochondrial DNA B Resour ; 5(4): 3840-3842, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33426296

RESUMO

Camellia fraterna belongs to the genus Camellia in the family Theaceae. We sequenced and analyzed the complete chloroplast genome of C. fraterna by Illumina sequencing in this study. The full length of the complete chloroplast genome is 156,902 bp, containing a pair of inverted repeat regions of 26,030 bp (IRa and IRb) separated by a large single-copy (LSC) region of 86,583 bp and a small single-copy (SSC) region of 18,259 bp. The C. fraterna chloroplast genome encodes 135 genes, comprising 87 protein-coding genes, 37 tRNA genes, eight rRNA genes, and three pseudogenes. This study will be useful for further study on genetic diversity and molecular breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA