Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(14): e202218094, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744674

RESUMO

Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.

2.
J Am Chem Soc ; 144(41): 18766-18771, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36214757

RESUMO

Boron oxide/hydroxide supported on oxidized activated carbon (B/OAC) was shown to be an inexpensive catalyst for the oxidative dehydrogenation (ODH) of propane that offers activity and selectivity comparable to boron nitride. Here, we obtain an atomistic picture of the boron oxide/hydroxide layer in B/OAC by using 35.2 T 11B and 17O solid-state NMR experiments. NMR spectra measured at 35.2 T resolve the boron and oxygen sites due to narrowing of the central-transition powder patterns. A 35.2 T 2D 11B{17O} dipolar heteronuclear correlation NMR spectrum revealed the structural connectivity between boron and oxygen atoms. The approach outlined here should be generally applicable to determine atomistic structures of heterogeneous catalysts containing quadrupolar nuclei.


Assuntos
Boro , Propano , Boro/química , Propano/química , Pós , Carvão Vegetal , Espectroscopia de Ressonância Magnética/métodos , Oxigênio , Hidróxidos , Estresse Oxidativo
3.
Chemistry ; 26(15): 3275-3286, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31794082

RESUMO

Group 16 chalcogens potentially provide Lewis-acidic σ-holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen-bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single-crystal X-ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen- and nitrogen-containing heterocycles. Extensive 77 Se and 125 Te solid-state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77 Se and 125 Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen-bond-based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid-state NMR protocols to detect these interactions in powdered materials.

4.
Phys Chem Chem Phys ; 22(7): 3817-3824, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31994554

RESUMO

We report a multifaceted experimental and computational study of three self-complementary chalcogen-bond donors as well as a series of seven chalcogen bonded cocrystals. Bis(selenocyanatomethyl)benzene derivatives were cocrystallized with various halide salts (Bu4NCl, Bu4NBr, Bu4NI) and nitrogen-containing Lewis bases (4,4'-bipyridine and 1,2-di(4-pyridyl)ethylene). Three new single-crystal X-ray structures are reported. 77Se solid-state nuclear magnetic resonance spectroscopic study of a series of cocrystals establishes correlations between the NMR parameters of selenium and the local ChB geometry. For example, the 77Se isotropic chemical shift generally decreases on cocrystal formation. Diagnostic 13C chemical shifts are also described. In addition, all the chalcogen bonded cocrystals and pure tectons are investigated by Raman and IR spectroscopy techniques. Characteristic red shifts of the NC-Se stretching band upon cocrystal formation on the order of 10 to 20 cm-1 are observed, which provides a distinct signature of the chalcogen bond involving selenocyanates. The 125Te chemical shift tensor and X-ray structure of chalcogen-bonded tellurocyanatomethylbenzene are also reported. Insights into the connection between the electronic structure of the chalcogen bond and the experimentally measured 77Se chemical shift tensors are afforded through a natural localized molecular orbital density functional theory analysis. For the systems studied here, the lack of a very strong a correlation between experimental and DFT-computed 77Se chemical shift tensors leads to the conclusion that many structural features likely influence their ultimate values; however, computations on model systems reveal that the ChB alone produces consistent and predictable effects (e.g., the chalcogen chemical shift decreases as the chalcogen bond is shortened).

5.
J Phys Chem A ; 123(29): 6194-6209, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31294556

RESUMO

Oxygen-17-enriched triphenylphosphine oxide and three of its halogen-bonded cocrystals featuring 1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene as halogen bond donors have been characterized by 31P and 17O single-crystal NMR spectroscopy. Single-crystal NMR allows for the measurement of not only the magnitudes of various NMR interaction tensors, but also their orientations relative to the crystal lattice and therefore relative to the halogen bonds themselves. 31P chemical shift tensors, 17O chemical shift tensors, 17O quadrupolar coupling tensors, and 31P-17O indirect nuclear spin-spin (J) coupling tensors are reported here for P═O···I halogen bonds. The angular deviations in the directions of the pseudo-unique components of the 31P chemical shift tensors, the 17O chemical shift tensors, and the 17O quadrupolar coupling tensors from the direction of the oxygen-iodine halogen bond correlate with the deviations in linearity of the P═O···I halogen bond. There is also a clear decrease in anisotropy and an increase in asymmetry of the J(31P,17O) coupling tensors attributable to the formation of iodine-oxygen halogen bonds. The small but quantifiable changes in the tensors are consistent with the weak nature of these halogen bonds relative to the P═O motif. Overall, this work establishes single-crystal NMR as a novel probe of halogen bonds in solids. Analysis of the results has provided insights into the correlations between the magnitude and orientation of various NMR interaction tensors and the local geometry of the halogen bond. Gauge-including projector-augmented wave computations corroborate the experimental findings.

6.
Solid State Nucl Magn Reson ; 102: 53-62, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398552

RESUMO

The design and implementation of a software package for the analysis of single-crystal NMR data is presented. The SCFit software can treat spectra arising from various interactions: (i) chemical shift tensor only; (ii) chemical shift tensor and quadrupolar coupling tensor; (iii) dipolar and indirect nuclear spin-spin coupling tensors; (iv) all four interactions. The software is demonstrated on recently reported 17O and 31P single-crystal NMR data for triphenylphosphine oxide and for two of its halogen-bonded cocrystals. The 17O single-crystal NMR data represent a case where all four above-mentioned interactions simultaneously affect the spectra. SCFit can fit the chemical shift and quadrupolar coupling in two ways: (i) through an unconstrained fitting process where all tensor parameters are freely optimized or (ii) through a constrained fitting process where the principal components of the tensors may be fixed to values known previously with high precision via the analysis of powder samples. The second strategy is explored in an effort to reduce the number of unknowns in the fitting process; an improvement in the precision of the resulting tensor orientations is noted in some cases.

7.
Chem Sci ; 15(6): 2181-2196, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332836

RESUMO

This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.

8.
Chem Commun (Camb) ; 59(84): 12609-12612, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791521

RESUMO

Matere bonds (MaB) to rhenium in a set of organic perrhenates are probed via185/187Re solid-state NMR in applied magnetic fields of up to 35.2 T, and via185/187Re NQR. 185/187Re quadrupolar couplings distinguish between MaB samples and control samples, and their precise values are governed by shear strain of the ReO4- anions.

10.
Chem Mater ; 34(16): 7159-7166, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032550

RESUMO

A reproducible synthesis strategy for ultracrystalline K,Na-aluminosilicate JBW zeolite is reported. The synthesis uses a Na-based hydrated silicate ionic liquid (HSIL) as a silicon source and gibbsite as the aluminum source. 27Al and 23Na NMR spectra exhibit crystalline second-order quadrupole patterns in the hydrated as well as dehydrated states and distinct resonances for different T-sites demonstrating an exceptional degree of order of the elements of the JBW framework, observed for the first time in a zeolite. Detailed structural analysis via NMR crystallography, combining powder X-ray diffraction and solid-state NMR of all elements (27Al, 29Si, 23Na, 39K, and 1H), reveals remarkable de- and rehydration behavior of the JBW framework, transforming from its as-made hydrated structure via a modified anhydrous state into a different rehydrated symmetry while showing astonishing flexibility for a semicondensed aluminosilicate. Its crystallinity, exceptional degree of ordering of the T atoms and sodium cations, and the fully documented structure qualify this defect-free K,Na-aluminosilicate JBW zeolite as a suitable model system for developing NMR modeling methods.

11.
Chem Commun (Camb) ; 54(78): 11041-11043, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30215643

RESUMO

We report the preparation and characterisation of a cocrystal of triphenylphosphine with 1,3,5-trifluoro-2,4,6-triiodobenzene. The structure features a rare example of phosphorus acting as a halogen bond acceptor.

12.
Chem Commun (Camb) ; 53(71): 9930-9933, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28829065

RESUMO

In situ31P solid-state NMR studies of halogen bond formation between triphenylphosphine oxide and para-diiodotetrafluorobenzene provide insights into the cocrystallisation process and provide an estimate of the activation energy. The effects of temperature, magic-angle spinning speed, and initially added liquid on the reaction rate and mechanism have been investigated.

13.
Zhonghua Yi Shi Za Zhi ; 41(6): 328-33, 2011 Nov.
Artigo em Zh | MEDLINE | ID: mdl-22335840

RESUMO

In the 6(th) year of the Guangxu Period (1880), Queen Mother Ci Xi was in poor health and the court looked for famous doctors everywhere. Eight doctors were selected by governors and sent to Beijing. After a 3-month long assessment, XUE Fuchen, WANG Shouzheng and MA Wenzhi were selected to help with the treatment of Queen Mother Ci Xi's disease. The Queen Mother was cured and doctors were rewarded twice in the 2(nd) and the 3(rd) year. Giving up medicine, XUE Fuchen and WANG Shouzheng took advantage of this opportunity to participate in politics, but did not realize their aspirations in the end. MA Wenzhi refused to be an official with the excuse of health problems and received the permission to go home, where he worked for patients, wrote medical books and finally became a famous medical scholar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA