Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380735

RESUMO

Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening-specific LATERAL ORGAN BOUNDRIES (LOB) TF, SlLOB1, up-regulates a suite of cell wall-associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 (EXP1) are strongly suppressed in SlLOB1 RNA interference lines, while EXP1 is induced in SlLOB1-overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, SlLOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.


Assuntos
Parede Celular/fisiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Carotenoides , Etilenos/metabolismo , Armazenamento de Alimentos , Inativação Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
2.
Plant J ; 110(6): 1791-1810, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411592

RESUMO

Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene ß-cyclase whose function we demonstrate.


Assuntos
Solanum lycopersicum , Solanum , Antocianinas/genética , Cromossomos de Plantas/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Solanum/genética
3.
Plant Physiol ; 190(4): 2557-2578, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36135793

RESUMO

Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Desidratação/genética , Desidratação/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigênese Genética
4.
BMC Musculoskelet Disord ; 24(1): 159, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864407

RESUMO

BACKGROUND: Preoperative expectations of total knee arthroplasty (TKA) outcomes are important determinants of patient satisfaction. However, expectations of patients in different countries are affected by cultural background. The general goal of this study was to describe Chinese TKA patients' expectations. METHODS: Patients scheduled for TKA were recruited in a quantitative study(n = 198). The Hospital for Special Surgery Total Knee Replacement Expectations Survey Questionnaire was used for survey TKA patients' expectations. Descriptive phenomenological design was used for the qualitative research. Semi-structured interviews were conducted with 15 TKA patients. Colaizzi's method was used for interview data analysis. RESULTS: The mean expectation score of Chinese TKA patients was 89.17 points. The 4 highest score items were walk short distance, remove the need for walker, relieve pain and make knee or leg straight. The 2 lowest score items were employed for monetary reimbursement and sexual activity. Five main themes and 12 sub-themes emerged from the interview data, including multiple factors raised expectations, expectations of physical comfort, expect various activities back to normal, hope for a long joint lifespan, and expect a better mood. CONCLUSIONS: Chinese TKA patients reported a relatively high level of expectations, and differences across cultures result in different expectation points than other national populations, requiring adjustment of items when using assessment tools across cultures. Strategies for expectation management should be further developed. LEVEL OF EVIDENCE: Level IV.


Assuntos
Artroplastia do Joelho , Humanos , Motivação , População do Leste Asiático , Povo Asiático , Articulação do Joelho/cirurgia
5.
PLoS Pathog ; 16(6): e1008608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574227

RESUMO

Transmission is a crucial part of a viral life cycle and transmission mode can have an important impact on virus biology. It was demonstrated that transmission mode can influence the virulence and evolution of a virus; however, few empirical data are available to describe the direct underlying changes in virus population structure dynamics within the host. Potato virus Y (PVY) is an RNA virus and one of the most damaging pathogens of potato. It comprises several genetically variable strains that are transmitted between plants via different transmission modes. To investigate how transmission modes affect the within-plant viral population structure, we have used a deep sequencing approach to examine the changes in the genetic structure of populations (in leaves and tubers) of three PVY strains after successive passages by horizontal (aphid and mechanical) and vertical (via tubers) transmission modes. Nucleotide diversities of viral populations were significantly influenced by transmission modes; lineages transmitted by aphids were the least diverse, whereas lineages transmitted by tubers were the most diverse. Differences in nucleotide diversities of viral populations between leaves and tubers were transmission mode-dependent, with higher diversities in tubers than in leaves for aphid and mechanically transmitted lineages. Furthermore, aphid and tuber transmissions were shown to impose stronger genetic bottlenecks than mechanical transmission. To better understand the structure of virus populations within the host, transmission mode, movement of the virus within the host, and the number of replication cycles after transmission event need to be considered. Collectively, our results suggest a significant impact of virus transmission modes on the within-plant diversity of virus populations and provide quantitative fundamental data for understanding how transmission can shape virus diversity in the natural ecosystems, where different transmission modes are expected to affect virus population structure and consequently its evolution.


Assuntos
Modelos Biológicos , Doenças das Plantas/virologia , Folhas de Planta , Tubérculos , Potyvirus , Solanum tuberosum , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Tubérculos/metabolismo , Tubérculos/virologia , Potyvirus/metabolismo , Potyvirus/patogenicidade , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
6.
Mol Cell Biochem ; 477(2): 549-557, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34845571

RESUMO

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is a collagen-related lysyl hydroxylase and its prognostic value in glioma patients was verified. However, its biological function in glioma has yet to be fully investigated. The PLOD1 mRNA status and clinical significance in gliomas were assessed via the GEPIA database. Overexpression or targeted depletion of PLOD1 was carried out in the human glioma cell line U87 and verified by western blotting. CCK8 and colony formation assays were implemented to examine the impact of PLOD1 on the proliferative and colony-forming phenotypes of U87 cells. Luciferase reporter assays and HSF1-specific pharmacologic inhibitors (KRIBB11) were employed to determine the regulatory relationship between PLOD1 and heat shock factor 1 (HSF1). High expression of PLOD1 was observed in tissue samples of glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG). GEPIA overall survival further demonstrated that both GBM and LGG patients with high PLOD1 displayed worse clinical outcomes compared with those with low PLOD1. Overexpression and targeted depletion of PLOD1 enhanced and suppressed U87 cell proliferation and colony formation, respectively. Luciferase reporter assays showed that PLOD1 significantly enhanced the transcriptional activity of HSF1 in HEK293T cells. PLOD1 deficiency in U87 cells inhibited HSF1-induced survivin accumulation, whereas KRIBB11 also blocked the PLOD1-overexpressing induced survivin expression. An inhibitor of HSF1 signaling events abolished the increased clonogenic potential caused by PLOD1 overexpression in U87 cells. High expression of PLOD1 can increase the proliferation and colony formation of U87 cells by activating the HSF1 signaling pathway. This study suggested PLOD1/HSF1 as an effective therapeutic target for gliomas.


Assuntos
Glioma/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas Oncogênicas/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Glioma/genética , Células HEK293 , Fatores de Transcrição de Choque Térmico/genética , Humanos , Proteínas Oncogênicas/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética
7.
J Neurooncol ; 157(1): 15-26, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187626

RESUMO

PURPOSE: Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS: The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS: DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS: DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Sistema A de Transporte de Aminoácidos , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Humanos , Camundongos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
8.
J Proteome Res ; 19(6): 2247-2263, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32338516

RESUMO

Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas/genética , Proteômica , Rhizobiaceae/genética , Transcriptoma
9.
Plant J ; 94(1): 169-191, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385635

RESUMO

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Assuntos
Mapeamento Cromossômico , Cucurbitaceae/genética , Frutas/genética , Locos de Características Quantitativas/genética , Cucurbitaceae/metabolismo , Qualidade dos Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Ligação Genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
10.
Plant Biotechnol J ; 17(1): 33-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29729208

RESUMO

Carotenoids are critically important to plants and humans. The ORANGE (OR) gene is a key regulator for carotenoid accumulation, but its physiological roles in crops remain elusive. In this study, we generated transgenic tomato ectopically overexpressing the Arabidopsis wild-type OR (AtORWT ) and a 'golden SNP'-containing OR (AtORHis ). We found that AtORHis initiated chromoplast formation in very young fruit and stimulated carotenoid accumulation at all fruit developmental stages, uncoupled from other ripening activities. The elevated levels of carotenoids in the AtOR lines were distributed in the same subplastidial fractions as in wild-type tomato, indicating an adaptive response of plastids to sequester the increased carotenoids. Microscopic analysis revealed that the plastid sizes were increased in both AtORWT and AtORHis lines at early fruit developmental stages. Moreover, AtOR overexpression promoted early flowering, fruit set and seed production. Ethylene production and the expression of ripening-associated genes were also significantly increased in the AtOR transgenic fruit at ripening stages. RNA-Seq transcriptomic profiling highlighted the primary effects of OR overexpression on the genes in the processes related to RNA, protein and signalling in tomato fruit. Taken together, these results expand our understanding of OR in mediating carotenoid accumulation in plants and suggest additional roles of OR in affecting plastid size as well as flower and fruit development, thus making OR a target gene not only for nutritional biofortification of agricultural products but also for alteration of horticultural traits.


Assuntos
Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Expressão Ectópica do Gene , Frutas/crescimento & desenvolvimento , Genes de Plantas/genética , Proteínas de Choque Térmico HSP40/genética , Solanum lycopersicum/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Frutas/metabolismo , Genes de Plantas/fisiologia , Proteínas de Choque Térmico HSP40/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
11.
BMC Gastroenterol ; 19(1): 14, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665367

RESUMO

BACKGROUND: Gastric Helicobacter pylori (H. pylori) is linked with chronic gastritis, peptic ulcer disease, and gastric malignancy. This study aims to investigate the association of gastric H. pylori with colorectal adenomatous polyps (CAP) in the Chinese population. METHODS: One thousand three hundred seventy five workers of China Petroleum and Chemical Corporation Sinopec Zhenhai Refining & Chemical Branch were recruited. Carbon-13 urea breathes test, and colorectal biopsies were utilized to detect H. pylori and CAP. The correlation between the number and distribution of CAP with H. pylori infection (HPI) was determined. Logistic regression models were applied to calculate the effect of H. pylori on the risk of CAP and pathway studio was used to attribute the cellular processes linking HPI and adenomatous polyps. RESULTS: One hundred Eighty participants were diagnosed as CAP, and 1195 participants were classified as healthy control. The prevalence of HPI in the CAP group was significantly higher than that in the healthy control group (57.8% verse 40.1%) (p<0.001). It was the number not the distribution of CAP corrected with H. pylori status. An increased risk of CAP was found to be associated with H. pylori (OR = 3.237; 95.0% CI 2.184-4.798, p = 0.00) even after multiple parameters adjustment. Pathway studio analysis demonstrated that HPI connected with CAP at multi-level. CONCLUSIONS: HPI is associated with an increased risk of CAP in the Chinese population.


Assuntos
Pólipos Adenomatosos/epidemiologia , Neoplasias Colorretais/epidemiologia , Gastroenteropatias/epidemiologia , Infecções por Helicobacter/epidemiologia , Helicobacter pylori , Pólipos Adenomatosos/patologia , Adulto , Idoso , China/epidemiologia , Neoplasias Colorretais/patologia , Comorbidade , Feminino , Gastroenteropatias/microbiologia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco
12.
Proc Natl Acad Sci U S A ; 113(44): 12580-12585, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791156

RESUMO

Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.


Assuntos
Temperatura Baixa , Metilação de DNA , Frutas/genética , Solanum lycopersicum/genética , Compostos Orgânicos Voláteis/metabolismo , Vias Biossintéticas/genética , Frutas/química , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Regiões Promotoras Genéticas/genética
13.
J Obstet Gynaecol Res ; 45(9): 1913-1917, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31304654

RESUMO

AIM: This article retrospectively analyzed the efficacy and safety of vaginoscopy in the treatment of adolescent abnormal uterine bleeding (AUB) in 204 cases of AUB. METHOD: From January 1, 2007 to December 31, 2017, 204 patients with intact hymen who were admitted to our hospital due to AUB received vaginoscopy, and vaginoscopy did not damage the hymen. In this study, 4.5 mm and 6.5 mm hysteroscopy were used with a pumping fluid pressure of 100-120 mm Hg and a flow rate of 400 mL/min. All 204 vaginoscopy was successfully completed in intravenous anesthesia. RESULTS: Postoperative pathological examination confirmed that of the 204 patients, 53 patients had simple hyperplasia. There were 53 cases of polyps, 50 cases of endometrial gland hyperplasia and disordered arrangement, 35 cases of proliferative phase endometrium, five cases of bleeding phase endometrium, partial glandular secretion, three cases of complex hyperplasia and one case of decidua like change. Follow-up data from 64 patients showed that 34 patients were effective after treatment. Stepwise logistic regression analysis suggested that endometrial thickness was associated with treatment outcome (HR, 0.875, 95% CI, 0.786-0.974, P = 0.014). There was no significant difference in drug use between patients with effective and ineffective treatment. CONCLUSION: 'No-touch' vaginoscopy is feasible for the diagnosis and treatment of adolescent AUB without destroying the intact hymen.


Assuntos
Histeroscopia/métodos , Hemorragia Uterina/cirurgia , Vagina/cirurgia , Adolescente , Estudos de Viabilidade , Feminino , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Hemorragia Uterina/etiologia
14.
J Adv Nurs ; 75(4): 834-849, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536860

RESUMO

AIMS: To explore the motivation of family members of patients at high risk for sudden cardiac death for undertaking cardiopulmonary resuscitation (CPR) training. BACKGROUND: Home cardiac arrests are associated with poor outcomes because few family members learn CPR. Little is known about factors that motivate family members to participate in CPR training. DESIGN: We used grounded theory to establish a theoretical framework to explore the motivational factors for learning CPR among family members. METHODS: Twelve participant observations and 42 semi-structured interviews with family members of different behaviours towards CPR training were conducted from December 2013 - November 2016. Data were analysed using constant-comparisons, situational analysis, and encoding. FINDINGS: A motivation-behaviour theoretical framework for learning CPR was constructed. We identified meeting inner needs as the core category to demonstrate motivation. Security motivation and responsibility motivation emerged as main categories, which demonstrate that seeking a sense of security and shouldering family responsibility were important considerations for family members to learn CPR. These two motivations produced high-engagement behaviours of family members to learn CPR. CONCLUSIONS: The motivations we identified-deriving from a sense of security and family responsibility-are the main reasons family members would learn CPR and, therefore, should be understood by medical professionals. Understanding these motivations may help in the formulation of customized CPR training that further meets the needs of family members. For example, motivational interventions that are integrated with a family-based CPR course can be designed to improve the participation of family members and the sustainability of the course.


Assuntos
Reanimação Cardiopulmonar/educação , Família/psicologia , Motivação , Adulto , Idoso , Morte Súbita Cardíaca/prevenção & controle , Feminino , Teoria Fundamentada , Humanos , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/psicologia , Parada Cardíaca Extra-Hospitalar/reabilitação , Fatores de Risco
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(9): 1030-1034, 2019 Sep 28.
Artigo em Zh | MEDLINE | ID: mdl-31645493

RESUMO

OBJECTIVE: To investigate the clinical value of vaginal endoscopy in the diagnosis and treatment for vaginal and uterine diseases in young girls and adolescent girls. 
 Methods: The clinical data of 156 young girls and adolescent girls treated with vaginoscopy from February 2000 to August 2017 were analyzed retrospectively.
 Results: Of the 37 cases of young girls, the clinical symptoms were the most common in vaginal hemorrhage, accounting for 40.5% (15 cases), the second one in vaginal foreign body, accounting for 29.7% (11 cases), the third one in abnormal vaginal secretion, accounting for 24.3% (9 cases), and the last one in low abdominal pain, accounting for 5.4% (2 cases). The final diagnosis of vaginal foreign body was 13 cases (35.1%). Of the 119 adolescent girls, the clinical symptoms of the visit were the most common in menstrual abnormalities or irregular vaginal bleeding, accounting for 75.6% (90 cases). The final diagnosis of abnormal uterine bleeding-ovulatory dysfunction was the most common with 59 cases (49.6%), following by 16 cases of abnormal uterine bleeding-polyp, 2 cases of abnormal uterine bleeding-malignancy and hyperplasia, and 1 cases of abnormal uterine bleeding-coagulopathy. There were 37 cases (31.1%) of reproductive tract malformation. All 156 patients successfully completed vaginal endoscopy and operation with only 1 case of urinary system infection. No other complications occurred and no damage in the hymen. 
 Conclusion: Vaginal endoscopy is a safe, effective and near-noninvasive way for the diagnosis and treatment of vaginal or uterine diseases in young girls and adolescent girls. In the case of abnormal vaginal secretions and vaginal bleeding, it should be properly recommended to use the vaginal endoscopy for diagnosis and treatment.


Assuntos
Endoscopia , Vagina , Adolescente , Feminino , Corpos Estranhos , Humanos , Estudos Retrospectivos , Hemorragia Uterina
16.
BMC Plant Biol ; 18(1): 267, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400866

RESUMO

BACKGROUND: While the role of ethylene in fruit ripening has been widely studied, the contributions of additional plant hormones are less clear. Here we examined the interactions between the transcription factor MaMADS2-box which plays a major role in banana fruit ripening and hormonal regulation. Specifically, we used MaMADS2 repressed lines in transcriptome and hormonal analyses throughout ripening and assessed hormone and gene expression perturbations as compared to wild-type (WT) control fruit. RESULTS: Our analyses revealed major differences in hormones levels and in expression of hormone synthesis and signaling genes mediated by MaMADS2 especially in preclimacteric pulp. Genes encoding ethylene biosynthesis enzymes had lower expression in the pulp of the repressed lines, consistent with reduced ethylene production. Generally, the expression of other hormone (auxin, gibberellins, abscisic acid, jasmonic acid and salicylic acid) response pathway genes were down regulated in the WT pulp prior to ripening, but remained high in MaMADS2 repressed lines. Hormone levels of abscisic acid were also higher, however, active gibberellin levels were lower and auxin levels were similar with MaMADS2 repression as compared to WT. Although abscisic level was higher in MaMADS2 repression, exogenous abscisic acid shortened the time to ethylene production and increased MaMADS2 mRNA accumulation in WT. Exogenous ethylene did not influence abscisic acid level. CRE - a cytokinin receptor, increased its expression during maturation in WT and was lower especially at prebreaker in the repressed line and zeatin level was lower at mature green of the repressed line in comparison to WT. CONCLUSIONS: In addition to previously reported effects of MaMADS2 on ethylene, this transcription factor also influences other plant hormones, particularly at the pre-climacteric stage. The cytokinin pathway may play a previously unanticipated role via MaMADS2 in banana ripening. Finally, abscisic acid enhances MaMADS2 expression to promote ripening, but the transcription factor in turn auto inhibits ABA synthesis and signaling. Together, these results demonstrate a complex interaction of plant hormones and banana fruit ripening mediated by MaMADS2.


Assuntos
Frutas/metabolismo , Musa/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo
17.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331089

RESUMO

Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases.IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases.


Assuntos
Begomovirus/genética , Evolução Molecular , Variação Genética , Folhas de Planta/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Solanum lycopersicum/virologia , Animais , Afídeos/virologia , China , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , RNA Interferente Pequeno/genética , RNA Viral/genética , Rhabdoviridae/genética , Rhabdoviridae/isolamento & purificação , Análise de Sequência de RNA/métodos
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 35(1): 1-8, 2018 Feb 10.
Artigo em Zh | MEDLINE | ID: mdl-29419850

RESUMO

The widespread application of next generation sequencing (NGS) in clinical settings has enabled testing, diagnosis, treatment and prevention of genetic diseases. However, many issues have arisen in the meanwhile. One of the most pressing issues is the lack of standards for reporting genetic test results across different service providers. The First Forum on Standards and Specifications for Clinical Genetic Testing was held to address the issue in Shenzhen, China, on October 28, 2017. Participants, including geneticists, clinicians, and representatives of genetic testing service providers, discussed problems of clinical genetic testing services across in China and shared opinions on principles, challenges, and standards for reporting clinical genetic test results. Here we summarize expert opinions presented at the seminar and report the consensus, which will serve as a basis for the development of standards and guidelines for reporting of clinical genetic testing results, in order to promote the standardization and regulation of genetic testing services in China.


Assuntos
Consenso , Testes Genéticos/métodos , Testes Genéticos/normas , Guias de Prática Clínica como Assunto , China , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
19.
Am J Physiol Regul Integr Comp Physiol ; 313(5): R560-R571, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835451

RESUMO

Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-(S)-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 µM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.


Assuntos
Arginase/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/complicações , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Animais , Quimiocina CCL2/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Aumento de Peso/fisiologia
20.
New Phytol ; 214(2): 830-841, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28150888

RESUMO

Despite the physiological importance of aluminum (Al) phytotoxicity for plants, it remained unknown if, and how, calcineurin B-like calcium sensors (CBLs) and CBL-interacting protein kinases (CIPKs) are involved in Al resistance. We performed a comparative physiological and whole transcriptome investigation of an Arabidopsis CBL1 mutant (cbl1) and the wild-type (WT). cbl1 plants exudated less Al-chelating malate, accumulated more Al, and displayed a severe root growth reduction in response to Al. Genes involved in metabolism, transport, cell wall modification, transcription and oxidative stress were differentially regulated between the two lines, under both control and Al stress treatments. Exposure to Al resulted in up-regulation of a large set of genes only in WT and not cbl1 shoots, while a different set of genes were down-regulated in cbl1 but not in WT roots. These differences allowed us, for the first time, to define a calcium-regulated/dependent transcriptomic network for Al stress responses. Our analyses reveal not only the fundamental role of CBL1 in the adjustment of central transcriptomic networks involved in maintaining adequate physiological homeostasis processes, but also that a high shoot-root dynamics is required for the proper deployment of Al resistance responses in the root.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Mutação com Perda de Função/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Malatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA