Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Physiol Plant ; 175(2): e13885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36852715

RESUMO

Hydrogen sulfide (H2 S) is an important gaseous signal molecule that regulates plant growth and stress resistance. However, research on the H2 S synthase (HSase) genes is still limited in the model legume plant Medicago truncatula Gaertn. In the present study, a total of 40 HSase family members were first identified and analyzed in the M. truncatula genome, and these genes distributed across eight chromosomes and were clustered into five groups (I-V) based on their conserved gene structures and protein motifs. Expression analysis revealed that the MtHSase genes were expressed in all the tested abiotic stresses, albeit with expression level differences. This study also showed that H2 S improves low temperature tolerance of alfalfa seedlings by regulating the antioxidant defense system and enhancing photosynthetic capacity. Thus, the study provides new insights into how the H2 S signal regulates tolerance to low-temperature stress and provides the basis for further gene function and detection.


Assuntos
Sulfeto de Hidrogênio , Medicago truncatula , Medicago sativa/genética , Sulfeto de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Temperatura , Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Filogenia
2.
Oral Dis ; 29(5): 2154-2162, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35451542

RESUMO

OBJECTIVES: Exploring the role of OPN N-glycosylation in osteoblasts and osteoclasts. METHODS: Immunohistochemistry was used to detect the expression of OPN in mice with apical periodontitis. The asparagine at position 79 of the OPN protein was mutated to glutamine, and the above plasmids were transfected into osteoblasts and osteoclasts. The effect of OPN N-glycosylation on proliferation of osteoblasts and osteoclasts was detected by CCK8 assays. Western blotting was used to detect the expression of OPN N-glycosylation on osteoclasts and osteoblasts. Detection of N-glycosylation of OPN activated the NF-κB signaling pathway to regulate osteoblasts and osteoclasts. RESULTS: OPN increased the expression in a mice model of apical periodontitis. The expression curve of OPN resembled a reverse V shape. The OPN N-glycosylation site was identified as 79 by MS. N-glycosylation of OPN promoted the proliferation of osteoclasts. But the N79 glycosylation site of mutant OPN could not increase the proliferation of osteoblasts. OPN N-glycosylation modulated the expression of osteoclast- and osteoblast-associated factors through the NF-κB signaling pathway. N-glycosylation of OPN promoted nuclear translocation of NF-κB in osteoclasts and osteoblasts. CONCLUSIONS: The N-glycosylation site of OPN is 79. N-glycosylation of OPN played an important role in the biological function of OPN protein.


Assuntos
NF-kappa B , Periodontite Periapical , Camundongos , Animais , NF-kappa B/metabolismo , Osteopontina/metabolismo , Glicosilação , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Periodontite Periapical/metabolismo , Diferenciação Celular
3.
Cancer Cell Int ; 22(1): 103, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246136

RESUMO

BACKGROUND: A hydatidiform mole is a condition caused by abnormal proliferation of trophoblastic cells. MicroRNA miR-30a acts as a tumor suppressor gene in most tumors and participates in the development of various cancers. However, its role in hydatidiform moles is not clear. METHODS: Quantitative real-time reverse transcription PCR was used to verify the expression level of miR-30a and STOX2 (encoding storkhead box 2). Flow cytometry assays were performed to detect the cell cycle in cell with different expression levels of miR-30a and STOX2. Cell Cycle Kit-8, 5-ethynyl-2'-deoxyuridine, and colony formation assays were used to detect cell proliferation and viability. Transwell assays was used to test cell invasion and migration. Dual-luciferase reporter assays and western blotting were used to investigate the potential mechanisms involved. RESULT: Low miR-30a expression promoted the proliferation, migration, and invasion of trophoblastic cells (JAR and HTR-8). Dual luciferase assays confirmed that STOX2 is a target of miR-30a and resisted the effect of upregulated miR-30a in trophoblastic cells. In addition, downregulation of STOX2 by miR-30a could activate ERK, AKT, and P38 signaling pathways. These results revealed a new mechanism by which ERK, AKT, and P38 activation by miR-30a/STOX2 results in excessive proliferation of trophoblast cells in the hydatidiform mole. CONCLUSIONS: In this study, we found that miR-30a plays an important role in the development of the hydatidiform mole. Our findings indicate that miR-30a might promote the malignant transformation of human trophoblastic cells by regulating STOX2, which strengthens our understanding of the role of miR-30a in regulating trophoblastic cell transformation.

4.
Physiol Plant ; 174(6): e13817, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36344445

RESUMO

Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.


Assuntos
Bacillus , Festuca , Lolium , Rizosfera , Estresse Salino , Desenvolvimento Vegetal , Plântula , Raízes de Plantas
5.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077362

RESUMO

Paclobutrazol (PBZ) is a plant-growth regulator (PGR) in the triazole family that enhances plant tolerance to environmental stresses. Low-light (LL) intensity is a critical factor adversely affecting the growth of tall fescue (Festuca arundinacea Schreb.). Therefore, in this study, tall fescue seedlings were treated with PBZ under control and LL conditions to investigate the effects of PBZ on enhancing LL stress resistance by regulating the growth, photosynthesis, oxidative defense, and hormone levels. Our results reveal that LL stress reduced the total biomass, chlorophyll (Chl) content, photosynthetic capacity, and photochemical efficiency of photosystem II (PSII) but increased the membrane lipid peroxidation level and reactive oxygen species (ROS) generation. However, the application of PBZ increased the photosynthetic pigment contents, net photosynthetic rate (Pn), maximum quantum yield of PSII photochemistry (Fv/Fm), ribulose-1,5-bisphosphate carboxylase (RuBisCO) activity, and starch content. In addition, PBZ treatment activated the antioxidant enzyme activities, antioxidants contents, ascorbate acid-glutathione (AsA-GSH) cycle, and related gene expression, lessening the ROS burst (H2O2 and O2∙-). However, the gibberellic acid (GA) anabolism was remarkably decreased by PBZ treatment under LL stress, downregulating the transcript levels of kaurene oxidase (KO), kaurenoic acid oxidase (KAO), and GA 20-oxidases (GA20ox). At the same time, PBZ treatment up-regulated 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, significantly increasing the endogenous abscisic acid (ABA) concentration under LL stress. Thus, our study revealed that PBZ improves the antioxidation and photosynthetic capacity, meanwhile increasing the ABA concentration and decreasing GA concentration, which ultimately enhances the LL stress tolerance in tall fescue.


Assuntos
Festuca , Lolium , Antioxidantes/farmacologia , Clorofila/metabolismo , Festuca/metabolismo , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Lolium/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triazóis/metabolismo , Triazóis/farmacologia
6.
Cell Biol Int ; 45(9): 1957-1965, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34003541

RESUMO

The successful implantation of embryos is crucial for pregnancy in mammals. This complex process is inevitably dependent on the development of the endometrium. The paired-like homeodomain transcription factor 2 (PITX2) is involved in a variety of biological processes, but whether it is involved in embryo implantation has not been reported. In this study, we aimed to investigate uterine expression and regulation of PITX2 during implantation. We found that PITX2 was elevated in the human endometrium in the secretory phase. The results of the pregnant mouse models showed that PITX2 expression was spatiotemporal in mouse endometrial tissue throughout peri-implantation period, and it was significantly upregulated at the time of implantation. Interestingly, PITX2 was mainly localized to the glandular epithelium cells on D2.5-3.5 of pregnancy, while D5.5-6.5 was largely expressed in stromal cells. In vitro, PITX2 regulated endometrial cells proliferation, migration, invasion, and other functions through the Wnt/ß-catenin signaling pathway. In addition, a significant decrease in the rate of embryo implantation was observed after injecting PITX2 small interfering RNA into the uterine horn. These results demonstrate the effects of PITX2 on the physiological function of endometrial cells and embryo implantation, suggesting a role in the endometrial regulatory mechanism during implantation.


Assuntos
Implantação do Embrião , Endométrio/metabolismo , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Via de Sinalização Wnt , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Gravidez , Proteína Homeobox PITX2
8.
Cell Physiol Biochem ; 49(3): 884-898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30184545

RESUMO

BACKGROUND/AIMS: Periapical periodontitis is caused by bacterial infection and results in both one destruction and tooth loss. Osteopontin (OPN) is a secreted phosphorylated glycoprotein that participates in bone metabolism. METHODS: Thirty-three patients with chronic periapical periodontitis and 10 patients who had undergone the orthodontic removal of healthy tooth tissue (control) at the periodontal ligament were investigated, and an animal model of mouse periapical periodontitis was established for an in vivo analysis. The relationship between OPN and bone destruction during periapical periodontitis was analyzed. Osteoblasts and osteoclasts were cultured in vitro and treated with lipopolysaccharide. An inhibitor of NF-κB was used to pretreat the transfected cells. RESULTS: OPN increased osteoclast proliferation and differentiation, but reduced osteoblasts proliferation and differentiation. OPN activated the NF-κB pathway during periapical periodontitis and accelerated the transfer and phosphorylation of P65 from the cytoplasm to the nucleus. CONCLUSION: This study demonstrated that OPN played important roles in the progression of periapical periodontitis, and a dual role in bone metabolism during periapical periodontitis, linking osteoclasts and osteoblasts. The underlying mechanism may be related to the NF-κB pathway.


Assuntos
NF-kappa B/metabolismo , Osteopontina/metabolismo , Periodontite Periapical/patologia , Transdução de Sinais , Animais , Catepsina K/genética , Catepsina K/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Mandíbula/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/antagonistas & inibidores , Osteopontina/genética , Periodontite Periapical/diagnóstico por imagem , Periodontite Periapical/metabolismo , Tecido Periapical/diagnóstico por imagem , Tecido Periapical/metabolismo , Ligamento Periodontal/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo
9.
Molecules ; 23(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401644

RESUMO

(1) Background: d-alanine-d-alanine ligase (DdlA), an effective target for drug development to combat against Mycobacterium tuberculosis (Mtb), which threatens human health globally, supplies a substrate of d-alanyl-d-alanine for peptidoglycan crosslinking by catalyzing the dimerization of two d-alanines. To obtain a better understanding of DdlA profiles and develop a colorimetric assay for high-throughput inhibitor screening, we focused on explicating and characterizing Tb-DdlA. (2) Methods and Results: Rv2981c (ddlA) was expressed in Escherichia coli, and the purified Tb-DdlA was identified using (anti)-polyhistidine antibody followed by DdlA activity confirmation by measuring the released orthophosphate via colorimetric assay and the yielded d-alanyl-d-alanine through high performance thin layer chromatography (HP-TLC). The kinetic assays on Tb-DdlA indicated that Tb-DdlA exhibited a higher affinity to ATP (KmATP: 50.327 ± 4.652 µmol/L) than alanine (KmAla: 1.011 ± 0.094 mmol/L). A colorimetric assay for Tb-DdlA activity was developed for high-throughput screening of DdlA inhibitors in this study. In addition, we presented an analysis on Tb-DdlA interaction partners by pull-down assay and MS/MS. Eight putative interaction partners of Tb-DdlA were identified. (3) Conclusions: Our dataset provided a valuable resource for exploring Tb-DdlA biology, and developed an easy colorimetric assay for screening of Tb-DdlA inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Alanina/metabolismo , Proteínas de Bactérias/metabolismo , Dipeptídeos/metabolismo , Mycobacterium tuberculosis/enzimologia , Peptídeo Sintases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Bioensaio , Clonagem Molecular , Inibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Mycobacterium tuberculosis/genética , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/genética , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
10.
Cell Tissue Res ; 362(2): 421-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26022336

RESUMO

Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports have demonstrated that FoxM1 is oncogenic and plays important roles in angiogenesis, invasion, and metastasis. However, little is known about the roles of FoxM1 in the invasion of EVT cells. EGF, as a growth factor (epidermal growth factor), has been studied extensively in reproduction. JAR cells are a reliable model for studying early invasive trophoblast regulation. We have observed the relationship between EGF and FoxM1 in JAR cells by using specific inhibitors for the intervention in and study of potential signal pathways. We have also tested the ability of JAR cells to be influenced by the expression of FoxM1. Our data indicate that EGF promotes FoxM1 expression through the ERK signal pathway. Over-FoxM1 expression upregulates the ability of JAR cells to migrate and invade and vice versa. Our investigation of FoxM1 should provide new insights into the molecular mechanisms of EVT invasion.


Assuntos
Movimento Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Trofoblastos/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/fisiologia , Feminino , Proteína Forkhead Box M1 , Masculino , Camundongos
11.
Front Endocrinol (Lausanne) ; 15: 1367653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586460

RESUMO

Background: The contribution of total fat mass and regional fat distribution to the risk of AF has rarely been studied. Methods: This prospective cohort study(N=494,063) evaluated the association of total fat mass measured by fat percentage (FP) and regional fat measured by arm fat percentage (AFP), trunk fat percentage (TFP), and leg fat percentage (LFP) with incident AF. A subgroup (N = 25,581) underwent MRI, which allowed us to further assess whether visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT) of the trunk fat exert different effects on AF incidence. Results: Over, a median 12.9 ± 1.86 years of follow-up, 29,658 participants (cumulative rate: 6.0%) developed AF. Each 1-standard deviation (SD) increase in LFP was associated with a 16% lower risk of AF (HR: 0.84, 95% CI: 0.82, 0.85). The association between FP and AF was weaker than that between LFP and AF (HR: 0.90, 95% CI: 0.89, 0.92). AFP and TFP only had a marginal association with a lower incidence of AF. Both the VAT and ASAT showed a U-shaped relationship with incident AF. Conclusions: Fat mass, mainly leg fat mass, was associated with a lower risk of AF. ASAT did not exert protective effects.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Estudos de Coortes , Estudos Prospectivos , Fatores de Risco , alfa-Fetoproteínas
12.
Plants (Basel) ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447020

RESUMO

Soil salinization is one of the most serious abiotic stresses restricting plant growth. Buffalograss is a C4 perennial turfgrass and forage with an excellent resistance to harsh environments. To clarify the adaptative mechanisms of buffalograss in response to salinity, we investigated the effects of NaCl treatments on photosynthesis, water status and K+/Na+ homeostasis of this species, then analyzed the expression of key genes involved in these processes using the qRT-PCR method. The results showed that NaCl treatments up to 200 mM had no obvious effects on plant growth, photosynthesis and leaf hydrate status, and even substantially stimulated root activity. Furthermore, buffalograss could retain a large amount of Na+ in roots to restrict Na+ overaccumulation in shoots, and increase leaf K+ concentration to maintain a high K+/Na+ ratio under NaCl stresses. After 50 and 200 mM NaCl treatments, the expressions of several genes related to chlorophyll synthesis, photosynthetic electron transport and CO2 assimilation, as well as aquaporin genes (BdPIPs and BdTIPs) were upregulated. Notably, under NaCl treatments, the increased expression of BdSOS1, BdHKT1 and BdNHX1 in roots might have helped Na+ exclusion by root tips, retrieval from xylem sap and accumulation in root cells, respectively; the upregulation of BdHAK5 and BdSKOR in roots likely enhanced K+ uptake and long-distance transport from roots to shoots, respectively. This work finds that buffalograss possesses a strong ability to sustain high photosynthetic capacity, water balance and leaf K+/Na+ homeostasis under salt stress, and lays a foundation for elucidating the molecular mechanism underlying the salt tolerance of buffalograss.

13.
Biochem Mol Biol Educ ; 50(6): 561-570, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36082801

RESUMO

Biochemistry, a complicated basic course in health sciences, plays a fundamental role in describing pathogenic mechanism of illness in molecular terms, and is required to be learned for all medical students. Due to various obstacles to biochemistry learning and teaching, there is a pressing issue of curriculum reform to arouse the student's enthusiasm in biochemistry learning. In this study, an integrated topic-based biochemistry training program (TBBTP) combining the traditional lectures, question-based learning and experimental practices, was introduced in biochemistry teaching. Its effectiveness was evaluated through examination and questionnaire analyses. Consequently, we found that TBBTP promoted the dissemination of biochemical knowledge via traditional lecture, designated learning issues and experimental practices, and acquisition of various skills through practical operation, presentation, and independent learning. It motivated students to study biochemistry with intense interest and enthusiasm. This study explored the feasibility of the topic-based biochemistry teaching as a supplement to biochemistry curriculum in medical education and as a mainstream pedagogy in biochemistry lab.


Assuntos
Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Currículo , Bioquímica/educação , Aprendizagem , Ensino
14.
Plant Physiol Biochem ; 170: 133-145, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883320

RESUMO

Hydrogen sulfide (H2S), as a gaseous messenger molecule, plays critical roles in signal transduction and biological modulation. In the present study, the roles of H2S in regulating chlorophyll (Chl) and carotenoid (Car) contents to improve photosynthesis in tall fescue were investigated under low-light (LL) stress. Compared to control conditions, LL stress significantly reduced total biomass, net photosynthetic rate (Pn), maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), and the contents of Chl and Car. Under exogenous sodium hydrosulfide (NaHS, H2S donor) application, these parameters were enhanced, ultimately increasing photosynthesis. Moreover, exogenous H2S up-regulated the expression of chlorophyll biosynthesis genes while down-regulated chlorophyll degradation genes, resulting in increases in chlorophyll precursors. Components of carotenoids and expression of genes encoding biosynthesis and degradation enzymes varied similarly. Additionally, application exogenous H2S up-regulated expression of FaDES1 and FaDCD. Thus, it enhanced L-cysteine desulfhydrase 1 (DES1, EC 4.4.1.1) and D-cysteine desulfhydrase (DCD, EC 4.4.1.15) activities leading to elevated endogenous H2S. However, these responses were reversed by treatment with hypotaurine (HT, H2S scavenger). These results suggested that H2S is involved in regulating photosynthesis to improve LL tolerance via modulating Chl and Car metabolisms in tall fescue.


Assuntos
Festuca , Sulfeto de Hidrogênio , Carotenoides , Clorofila , Fotossíntese
15.
Plant Physiol Biochem ; 190: 248-261, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152510

RESUMO

The vital signaling molecule 5-Aminolevulinic acid (ALA) plays critical roles in signal transduction and biological modulation under abiotic stresses. In this study, we explored the effects of exogenous ALA on low-light (LL) stress-induced photosynthesis and antioxidant system damage in tall fescue (Festuca arundinacea Schreb.) seedlings. LL stress decreased morphological index values and chlorophyll contents, while also reduced net photosynthetic rate (Pn) and the maximum quantum yield of photosystem II photochemistry (Fv/Fm). Notably, these restrictions were substantially alleviated by exogenous ALA. Moreover, the contents of chlorophyll and its synthetic precursors were significantly increased after ALA treatment. Meanwhile, ALA observably enhanced expression level of FaCHLG, FaHEMA, FaPOR, and FaCAO, which encode the chlorophyll precursors biosynthesis enzymes. Exogenous ALA repaired the damage to the chloroplast ultrastructure caused by LL stress and promoted the formation of ordered thylakoids and grana lamella. ALA also improved Rubisco activity and expression level of the photosynthetic enzyme genes FaRuBP, FaPRK, and FaGADPH. Additionally, application of exogenous ALA decreased relative electrolytic leakage and the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radicals (O2∙-), and increased the gene expression levels and activity of antioxidant enzymes. The ratios of ascorbic acid (AsA) to dehydroascorbic acid (DHA) and reduced glutathione (GSH) to oxidized glutathione (GSSG) were also increased significantly by application of ALA. Furthermore, all responses could be reversed by treatment with levulinic acid (LA). Thus, these results indicated that ALA protects tall fescue from LL stress through scavenging ROS, improving photosynthetic enzyme activity levels, increasing photosynthetic pigments contents, repairing chloroplast damage, and enhancing the photosynthesis rate.


Assuntos
Ácido Aminolevulínico , Antioxidantes , Festuca , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Ácido Desidroascórbico/metabolismo , Festuca/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula/metabolismo , Superóxidos/metabolismo
16.
J Adv Res ; 37: 119-131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499042

RESUMO

Introduction: O-linked ß-D-N-acetylglucosamine (O-GlcNAc) modification is a post-translational modification in which a single O-GlcNAc is added to serine or threonine residues in nuclear, cytoplasmic, and mitochondrial proteins, and is involved in a variety of physiological processes. Objectives: In the present study, the role of O-GlcNAcylation in embryo implantation was evaluated. Furthermore, whether O-GlcNAcylation is involved in orchestrating glucose metabolism to influence endometrial cell physiological functions was investigated. Methods: Different endometrial tissues were detected using immunohistochemistry. Pregnant mouse models were established to verify molecular expression. O-GlcNAc transferase and aquaporin 3 (AQP3) knockdown were used to detect embryo implantation efficiency in vitro and in vivo. Western blotting and immunofluorescence were used to detect protein expression and stability. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) were used to verify the binding transcription factor. Glycolysis was detected using bioenergy analyzer, and metabolites were analyzed using isotope 13C-labeled LC-MS. Metabolic-related genes were determined using RNA sequencing. Results: Activation of endometrial hexosamine biosynthetic pathway (HBP) caused elevated O-GlcNAcylation during the window of implantation, affecting endometrial cell function and embryo implantation. Specifically, elevated O-GlcNAcylation increased glucose uptake via glucose transporter 1 (GLUT1) leading to glucose metabolic flow into the pentose phosphate pathways and HBP, which regulate the metabolic reprogramming of endometrial cells. Furthermore, O-GlcNAcylation mediated the intracellular transport of glycerol to support and compensate for glycolysis through regulation of AQP3. Unexpectedly, elevated AQP3 also increased glucose uptake via GLUT1. These processes maintained higher metabolic requirements for endometrial physiology. Furthermore, the transcription factor SP1 specifically bound to the AQP3 promoter region, and O-GlcNAcylation of SP1 increased its stability and transcriptional regulation of AQP3 which is associated with O-GlcNAcylation of SP1. Conclusion: Overall, O-GlcNAcylation regulated glucose metabolism in endometrial cells, and AQP3-mediated compensation provides new insights into the communication between glycolysis and O-GlcNAcylation.


Assuntos
Aquaporina 3 , Glicólise , Animais , Aquaporina 3/metabolismo , Implantação do Embrião , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hexosaminas , Camundongos
17.
Int J Mol Med ; 45(3): 939-946, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31985021

RESUMO

Acute kidney injury (AKI) is characterized by abrupt kidney dysfunction. It results in remote organ dysfunction, including the brain. The underlying mechanism of the kidney­brain axis in AKI and effective protective approaches remain unknown. The present study aimed to investigate the potential protective effect of ginsenoside (GS) on AKI induced by glycerol in rats. Kidney function was initially assessed by blood urea nitrogen (BUN) and creatinine (Cre) tests, and was identified to be severely impaired following glycerol treatment, based on significant increases in BUN and Cre levels observed. Severe extensive necrosis of the majority of the renal tubules was observed by hematoxylin and eosin staining, additionally confirming that glycerol induced AKI. GS was identified to ameliorate the impairment of kidney function in the context of AKI. Further investigation of the mechanism revealed that GS may induce protection against oxidative stress via a kidney­brain axis. Furthermore, GS improved the activation of hypoxia­inducible factor 1α (HIF­1α) and vascular endothelial growth factor A (VEGF­A) in the hypothalamus response to AKI, and in the kidney tissues. The protective effect of GS in AKI may be associated with the interaction between the kidney and the brain. Taken together, these results suggested that GS was involved in the protective effects against AKI by decreasing oxidative damage to the kidney and brain, and by upregulating HIF­1α and VEGF­A levels in the kidney­brain axis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Ginsenosídeos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Western Blotting , Creatinina/metabolismo , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
18.
IUBMB Life ; 61(8): 846-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19517528

RESUMO

We previously established a line of phosphatidylethanolamine N-methyltransferase 2 (pemt2) -stably transfected CBRH-7919 hepatoma cells, and showed that pemt2 over-expression inhibited cell proliferation and induced apoptosis. This study was aimed to further elucidate the cellular mechanisms leading to this apoptosis in these cells. Fatty acid compositions of phosphatidylcholine (PC) in pemt2 over-expressed cells and control cells, and the location of PC synthesized by PEMT2 pathway were analyzed with lipid extraction, high-performance thin layer chromatography, high-performance gas chromatography (HPGC), and [(3)H]-ethanolamine tracing. The effects of pemt2 over-expression on the mitochondrial membrane fluidity, the release of cytochrome C from mitochondria, and the activity of caspases were determined by Western blot. Newly synthesized PC by PEMT2 contained more acyl groups of oleic acid (P < 0.01) and was mainly located in mitochondria; pemt2 over-expression increased the mitochondrial membrane fluidity and the release of cytochrome C from the mitochondria into the cytoplasma, which in turn activated caspase-9 and caspase-3, the key molecules in the mitochondrial apoptotic pathway. We demonstrated that, in rat hepatoma cells, PEMT2-induced apoptosis proceeds through mitochondria.


Assuntos
Apoptose/fisiologia , Membranas Mitocondriais/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Cromatografia Gasosa , Cromatografia em Camada Fina , Citocromos c/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Fosfatidiletanolamina N-Metiltransferase/farmacologia , Ratos
19.
J Microbiol Biotechnol ; 29(8): 1221-1229, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370112

RESUMO

Mycobacterium tuberculosis, a causative pathogen of tuberculosis (TB), still threatens human health worldwide. To find a novel drug to eradicate this pathogen, we tested taurine-5- bromosalicylaldehyde Schiff base (TBSSB) as an innovative anti-mycobacterial drug using Mycobacterium smegmatis as a surrogate model for M. tuberculosis. We investigated the antimicrobial activity of TBSSB against M. smegmatis by plotting growth curves, examined the effect of TBSSB on biofilm formation, observed morphological changes by scanning electron microscopy and transmission electron microscopy, and detected differentially expressed proteins using two-dimensional gel electrophoresis coupled with mass spectrometry. TBSSB inhibited mycobacterial growth and biofilm formation, altered cell ultrastructure and intracellular content, and inhibited cell division. Furthermore, M. smegmatis adapted itself to TBSSB inhibition by regulating the metabolic pathways and enzymatic activities of the identified proteins. NDMA-dependent methanol dehydrogenase, NAD(P)H nitroreductase, and amidohydrolase AmiB1 appear to be pivotal factors to regulate the M. smegmatis survival under TBSSB. Our dataset reinforced the idea that Schiff base-taurine compounds have the potential to be developed as novel anti-mycobacterial drugs.


Assuntos
Aldeídos/farmacologia , Antibacterianos/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Proteômica , Bases de Schiff/farmacologia , Taurina/análogos & derivados , Proteínas de Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/ultraestrutura , Mycobacterium tuberculosis , Taurina/farmacologia
20.
Enzyme Microb Technol ; 126: 32-40, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31000162

RESUMO

Functionally uncharacterized gene Rv3627c is predicted to encode a carboxypeptidase in the pathogen of Mycobacterium tuberculosis (M. tuberculosis), which remains a major threat to human health. Here, we sought to reveal the function of Rv3627c and to elucidate its effects on mycobacterial growth. Rv3627c was purified from E. coli using Ni2+-NTA affinity chromatography, and its identity was confirmed with a monoclonal anti-polyhistidine antibody. An enzyme activity assay involving a d-amino acid oxidase-peroxidase coupled colorimetric reaction and high-performance thin layer chromatography was performed. A pull-down assay and MS-MS were also employed to identify putative interaction partners of Rv3627c. Scanning electron microscopy and transmission electron microscopy were performed to observe any morphological alterations to Mycobacterium smegmatis (M. smegmatis). We successfully obtained soluble expressed Rv3627c and identified it as carboxypeptidase using prepared peptidoglycan. Four proteins were identified as potential interaction partners with Rv3627c based on results obtained from both a pull-down assay and MS/MS analysis. Rv3627c over-expression induced M. smegmatis cells to become elongated, and promoted the formation of increased numbers of Z-rings. Rv3627c, a novel carboxypeptidase in M. tuberculosis identified in this study, exerts important effects on mycobacterial cell morphology and cell division. This functional information provides a promising insight into anti-mycobacterial target designs.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxipeptidases/metabolismo , Divisão Celular , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Carboxipeptidases/genética , Clonagem Molecular , Dipeptídeos/metabolismo , Humanos , Mapas de Interação de Proteínas , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA