Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life (Basel) ; 14(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39063552

RESUMO

The eukaryotic microalga Nannochloropsis oceanica represents a promising bioresource for the production of biofuels and pharmaceuticals. Urea, a crucial nutrient for the photosynthetic N. oceanica, stimulates the accumulation of substances such as lipids, which influence growth and physiology. However, the specific mechanisms by which N. oceanica responds and adapts to urea addition remain unknown. High-throughput mRNA sequencing and differential gene expression analysis under control and urea-added conditions revealed significant metabolic changes. This involved the differential expression of 2104 genes, with 1354 being upregulated and 750 downregulated, resulting in the reprogramming of crucial pathways such as carbon and nitrogen metabolism, photosynthesis, and lipid metabolism. The results specifically showed that genes associated with photosynthesis in N. oceanica were significantly downregulated, particularly those related to light-harvesting proteins. Interestingly, urea absorption and transport may depend not only on specialized transport channels such as urease but also on alternative transport channels such as the ABC transporter family and the CLC protein family. In addition, urea caused specific changes in carbon and lipid metabolism. Genes associated with the Calvin cycle and carbon concentration mechanisms were significantly upregulated. In lipid metabolism, the expression of genes associated with lipases and polyunsaturated fatty acid synthesis was highly activated. Furthermore, the expression of several genes involved in the tricarboxylic acid cycle and folate metabolism was enhanced, making important contributions to energy supply and the synthesis and modification of genes and macromolecules. Our observations indicate that N. oceanica actively and dynamically regulates the redistribution of carbon and nitrogen after urea addition, providing references for further research on the effects of urea on N. oceanica.

2.
Mar Pollut Bull ; 176: 113419, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35152114

RESUMO

Long non-coding RNAs (lncRNAs) have been demonstrated to participate in plant growth and development as well as response to different biotic and abiotic stresses. However, the knowledge of lncRNA was limited in microalgae. In this study, by RNA deep sequencing, 134 lncRNAs were identified in marine Nannochloropsis oceanica in response to carbon dioxide fluctuation. Among them, there were 51 lncRNAs displayed differentially expressed between low and high CO2 treatments, including 33 upregulation and 18 downregulation lncRNAs. Cellulose metabolic process, glucan metabolic process, polysaccharide metabolic process, and transmembrane transporter activity were functionally enriched. Multiple potential target genes of lncRNA and lncRNA-mRNA co-located gene network were analyzed. Subsequent analysis had demonstrated that lncRNAs would participate in many biological molecular processes, including gene expression, transcriptional regulation, protein expression and epigenetic regulation. In addition, alternative splicing events were firstly analyzed in response to CO2 fluctuation. There were 2051 alternative splicing (AS events) identified, which might be associated with lncRNA. These observations will provide a novel insight into lncRNA function in Nannochloropsis and provide a series of targets for lncRNA-based gene editing in future.


Assuntos
Microalgas , RNA Longo não Codificante , Dióxido de Carbono/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Microalgas/genética , Microalgas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA
3.
PLoS One ; 16(11): e0259833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793503

RESUMO

Single-cell red microalga Porphyridium cruentum is potentially considered to be the bioresource for biofuel and pharmaceutical production. Nitrogen is a kind of nutrient component for photosynthetic P. cruentum. Meanwhile, nitrogen stress could induce to accumulate some substances such as lipid and phycoerythrin and affect its growth and physiology. However, how marine microalga Porphyridium cruentum respond and adapt to nitrogen starvation remains elusive. Here, acclimation of the metabolic reprogramming to changes in the nutrient environment was studied by high-throughput mRNA sequencing in the unicellular red alga P. cruentum. Firstly, to reveal transcriptional regulation, de novo transcriptome was assembled and 8,244 unigenes were annotated based on different database. Secondly, under nitrogen deprivation, 2100 unigenes displayed differential expression (1134 upregulation and 966 downregulation, respectively) and some pathways including carbon/nitrogen metabolism, photosynthesis, and lipid metabolism would be reprogrammed in P. cruentum. The result demonstrated that nitrate assimilation (with related unigenes of 8-493 fold upregulation) would be strengthen and photosynthesis (with related unigenes of 6-35 fold downregulation) be impaired under nitrogen deprivation. Importantly, compared to other green algae, red microalga P. cruentum presented a different expression pattern of lipid metabolism in response to nitrogen stress. These observations will also provide novel insight for understanding adaption mechanisms and potential targets for metabolic engineering and synthetic biology in P. cruentum.


Assuntos
Adaptação Fisiológica , Nitrogênio/metabolismo , Porphyridium/fisiologia , Regulação da Expressão Gênica , Porphyridium/metabolismo , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA