RESUMO
Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid (ABA) or salicylic acid (SA) and after recognition of pathogen-associated molecular patterns (PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type III effectors (T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms. Here, we show that the virulence and infection of Xanthomonas oryzae pv. oryzicola (Xoc), which is the causal agent of rice bacterial leaf streak disease, drastically increased in transgenic rice (Oryza sativa L.) plants overexpressing the Xoc T3E gene XopAP, which encodes a protein annotated as a lipase. We discovered that XopAP binds to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ), a membrane phospholipid that functions in pH control in lysosomes, membrane dynamics, and protein trafficking. XopAP inhibited the acidification of vacuoles by competing with vacuolar H+ -pyrophosphatase (V-PPase) for binding to PtdIns(3,5)P2 , leading to stomatal opening. Transgenic rice overexpressing XopAP also showed inhibition of stomatal closure when challenged by Xoc infection and treatment with the PAMP flg22. Moreover, XopAP suppressed flg22-induced gene expression, reactive oxygen species burst and callose deposition in host plants, demonstrating that XopAP subverts PAMP-triggered immunity during Xoc infection. Taken together, these findings demonstrate that XopAP overcomes stomatal immunity in plants by binding to lipids.
Assuntos
Oryza , Xanthomonas , Moléculas com Motivos Associados a Patógenos/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Pirofosfatase Inorgânica/metabolismo , Concentração de Íons de Hidrogênio , Fosfatidilinositóis/metabolismo , Lipase/metabolismo , Fosfolipídeos/metabolismoRESUMO
Xa1-mediated resistance to rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is triggered by transcription activator-like effectors (TALEs) and suppressed by interfering TALEs (iTALEs). TALEs interact with the rice transcription factor OsTFIIAγ1 or OsTFIIAγ5 (Xa5) to activate expression of target resistance and/or susceptibility genes. However, it is not clear whether OsTFIIAγ is involved in TALE-triggered and iTALE-suppressed Xa1-mediated resistance. In this study, genome-edited mutations in OsTFIIAγ5 or OsTFIIAγ1 of Xa1-containing rice 'IRBB1' and Xa1-transgenic plants of xa5-containing rice 'IRBB5' did not impair the activation or suppression of Xa1-mediated resistance. Correspondingly, the expression pattern of Xa1 in mutated OsTFIIAγ5 and OsTFIIAγ1 rice lines and 'IRBB1' rice was similar. In contrast, the expression of OsSWEET11 was repressed in rice lines mutated in OsTFIIAγ5 and OsTFIIAγ1. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation assays showed that both TALE PthXo1 and iTALE Tal3a interacted with OsTFIIAγ1 and OsTFIIAγ5 in plant nuclei. These results indicated that TALE-triggered and iTALE-suppressed Xa1-mediated resistance to bacterial blight is independent of OsTFIIAγ1 or OsTFIIAγ5 in rice, and suggest that an unknown factor is potentially involved in the interaction of Xa1, TALEs and iTALEs.
Assuntos
Resistência à Doença , Oryza , Doenças das Plantas/microbiologia , Fatores de Transcrição , Xanthomonas , Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Bacterial blight of cotton (BBC), which is caused by the bacterium Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease in cotton. Transcription activator-like effectors (TALEs), encoded by tal-genes, play critical roles in the pathogenesis of xanthomonads. Characterized strains of cotton pathogenic Xcm harbor 8-12 different tal genes and only one of them is functionally decoded. Further identification of novel tal genes in Xcm strains with virulence contributions are prerequisite to decipher the Xcm-cotton interactions. RESULTS: In this study, we identified six tal genes in Xss-V2-18, a highly-virulent strain of Xcm from China, and assessed their role in BBC. RFLP-based Southern hybridization assays indicated that Xss-V2-18 harbors the six tal genes on a plasmid. The plasmid-encoded tal genes were isolated by cloning BamHI fragments and screening clones by colony hybridization. The tal genes were sequenced by inserting a Tn5 transposon in the DNA encoding the central repeat region (CRR) of each tal gene. Xcm TALome evolutionary relationship based on TALEs CRR revealed relatedness of Xss-V2-18 to MSCT1 and MS14003 from the United States. However, Tal2 of Xss-V2-18 differs at two repeat variable diresidues (RVDs) from Tal6 and Tal26 in MSCT1 and MS14003, respectively, inferred functional dissimilarity. The suicide vector pKMS1 was then used to construct tal deletion mutants in Xcm Xss-V2-18. The mutants were evaluated for pathogenicity in cotton based on symptomology and growth in planta. Four mutants showed attenuated virulence and all contained mutations in tal2. One tal2 mutant designated M2 was further investigated in complementation assays. When tal2 was introduced into Xcm M2 and expressed in trans, the mutant was complemented for both symptoms and growth in planta, thus indicating that tal2 functions as a virulence factor in Xcm Xss-V2-18. CONCLUSIONS: Overall, the results demonstrated that Tal2 is a major pathogenicity factor in Xcm strain Xss-V2-18 that contributes significantly in BBC. This study provides a foundation for future efforts aimed at identifying susceptibility genes in cotton that are targeted by Tal2.
Assuntos
Gossypium/microbiologia , Análise de Sequência de DNA/métodos , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , China , Elementos de DNA Transponíveis , Gossypium/crescimento & desenvolvimento , Mutação INDEL , Filogenia , Doenças das Plantas/microbiologia , Plasmídeos/genética , Polimorfismo de Fragmento de Restrição , Fatores de Virulência/genética , Xanthomonas/genéticaRESUMO
Xanthomonas oryzae pv. oryzae is the causative agent of bacterial blight of rice and causes severe harvest loss and challenges to a stable food supply globally. In this study, a hypervirulent strain, LN4, compatible in rice varieties carrying Xa3, Xa4, xa13, and xa25 resistance genes, was used to generate DNA for nanopore sequencing. After assembly, the genome comprises a single chromosome of 5,012,583 bp, consisting of a total of 6,700 predicted coding sequences. Seventeen transcription activator-like effectors (TALEs) were encoded in the genome, of which two (Tal7 and Tal6c) were major TALEs. The approach and genome data provide information for the discovery of new virulence effectors and understanding of the virulence mechanism of TALEs in rice.
Assuntos
Oryza , Xanthomonas , Doenças das Plantas , Efetores Semelhantes a Ativadores de Transcrição , Xanthomonas/genéticaRESUMO
Xanthomonas oryzae pv. oryzae (Xoo) secretes transcription activator-like effectors (TALEs) to activate rice susceptibility (S) genes, causing bacterial blight (BB), as well as resistance (R) genes, leading to defense against BB. This activation follows a gene-for-gene paradigm that results in an arms race between the TALE of the pathogen and effector-binding elements (EBEs) in the promoters of host genes. In this study, we characterized a novel TALE, designated Tal6b/AvrXa27A, that activates the rice S gene OsSWEET11a and the rice R gene Xa27. Tal6b/AvrXa27A is a member of the AvrXa27/TalAO class and contains 16 repeat variable diresidues (RVDs); one RVD is altered and one is deleted in Tal6b/AvrXa27A compared with AvrXa27, a known avirulence (avr) effector of Xa27. Tal6b/AvrXa27A can transcriptionally activate the expression of Xa27 and OsSWEET11a via EBEs in their corresponding promoters, leading to effector-triggered immunity and susceptibility, respectively. The 16 RVDs in Tal6b/AvrXa27A have no obvious similarity to the 24 RVDs in the effector PthXo1, but EBETal6b and EBEPthXo1 are overlapped in the OsSWEET11a promoter. Tal6b/AvrXa27A is prevalent among Asian Xoo isolates, but PthXo1 has only been reported in the Philippine strain PXO99A. Genome editing of EBETal6b in the OsSWEET11a promoter further confirmed the requirement for OsSWEET11a expression in Tal6b/AvrXa27A-dependent susceptibility to Xoo. Moreover, Tal6b/AvrXa27A resulted in higher transcription of Xa27 than of OsSWEET11a, which led to a strong, rapid resistance response that blocked disease development. These findings suggest that Tal6b/AvrXa27A has a dual function: triggering resistance by activating Xa27 gene expression as an avirulence factor and inducing transcription of the S gene OsSWEET11a, resulting in virulence. Intriguingly, Tal6b/AvrXa27A, but not AvrXa27, can bind to the promoter of OsSWEET11a. The underlying recognition mechanism for this binding remains unclear but appears to deviate from the currently accepted TALE code.
Assuntos
Oryza , Xanthomonas , Oryza/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Edição de Genes , Virulência , Xanthomonas/genéticaRESUMO
Xanthomonas oryzae pv. oryzae (Xoo) injects major transcription activator-like effectors (TALEs) into plant cells to activate susceptibility (S) genes for promoting bacterial leaf blight in rice. Numerous resistance (R) genes have been used to construct differential cultivars of rice to identify races of Xoo, but the S genes were rarely considered. Different edited lines of rice cv. Kitaake were constructed using CRISPR/Cas9 gene-editing, including single, double and triple edits in the effector-binding elements (EBEs) located in the promoters of rice S genes OsSWEET11a, OsSWEET13 and OsSWEET14. The near-isogenic lines (NILs) were used as tracers to detect major TALEs (PthXo1, PthXo2, PthXo3 and their variants) in 50 Xoo strains. The pathotypes produced on the tracers determined six major TALE types in the 50 Xoo strains. The presence of the major TALEs in Xoo strains was consistent with the expression of S genes in the tracers, and it was also by known genome sequences. The EBE editing had little effect on agronomic traits, which was conducive to balancing yield and resistance. The rice-tracers generated here provide a valuable tool to track major TALEs of Xoo in Asia which then shows what rice cultivars are needed to combat Xoo in the field.
RESUMO
INTRODUCTION: Xa23 as an executor mediates broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), which contains a matching avirulence gene avrXa23, in rice for bacterial leaf blight (BLB). avrXa23 encodes a transcription activator-like effector (TALE) protein which binds to the EBE (effector-binding element) of the Xa23 promoter. It is unclear whether the considerable pressure of Xa23 leads to an emerging Xoo strain that overcomes Xa23 resistance. OBJECTIVES: This study aimed to uncover new Xoo isolate(s) that overcome Xa23-mediated resistance and to investigate how the pathogen evades the resistance. METHODS: Totally 185 Xoo isolates were used to screen possibly compatible strain(s) with Xa23-containing rice CBB23 by pathogenicity test. Genome Sequencing, Southern blot, tal gene cloning, Western blot, qRT-PCR and electrophoretic mobility shift assays (EMSA) were conducted to determine the mechanism of one Xoo isolate being compatible with Xa23-containing rice. RESULTS: One isolate AH28 from Anhui province is compatible with CBB23. AH28 strain contains an ortholog of avrXa23, tal7b and has 17 tal genes. The 4th RVD (repeat-variable diresidue) in Tal7b are missed and the 5th and 8th RVDs changed from NG and NS to NS and S*, respectively. These alternations made Tal7b unable to bind to the EBE of Xa23 promoter to activate the expression of Xa23 in rice. The ectopic expression of tal7b in a tal-free mutant PH of PXO99A did not alter the virulence of the strain PH, whereas avrXa23 made AH28 from compatibility to incompatibility with Xa23 rice. CONCLUSION: Best to our knowledge, this is the first insight of a naturally-emerging Xoo isolate that overcomes the broad-spectrum resistance of Xa23 by the variable AvrXa23-like TALE Tal7b. The RVD alteration in AvrXa23 may be a common strategy for the pathogen evolution to avoid being "trapped" by the executor R gene.
Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de PlantasRESUMO
Two-component systems (TCSs) (cognate sensor histidine kinase/response regulator pair, HK/RR) play a crucial role in bacterial adaptation, survival, and productive colonization. An atypical orphan single-domain RR VemR was characterized by the non-vascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) is known to cause bacterial leaf streak (BLS) disease in rice. Xoc growth and pathogenicity in rice, motility, biosynthesis of extracellular polysaccharide (EPS), and the ability to trigger HR in non-host tobacco were severely compromised in the deletion mutant strain RΔvemR as compared to the wild-type strain RS105. Site-directed mutagenesis and phosphotransfer experiments revealed that the conserved aspartate (D56) residue within the stand-alone phosphoacceptor receiver (REC) domain is essential for phosphorelay and the regulatory activity of Xoc VemR. Yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) data identified CheA as the HK co-opting the RR VemR for phosphorylation. Affinity proteomics identified several downstream VemR-interacting proteins, such as 2-oxoglutarate dehydrogenase (OGDH), DNA-binding RR SirA, flagellar basal body P-ring formation protein FlgA, Type 4a pilus retraction ATPase PilT, stress-inducible sensor HK BaeS, septum site-determining protein MinD, cytoskeletal protein CcmA, and Type III and VI secretion system proteins HrpG and Hcp, respectively. Y2H and deletion mutant analyses corroborated that VemR interacted with OGDH, SirA, FlgA, and HrpG; thus, implicating multi-layered control of diverse cellular processes including carbon metabolism, motility, and pathogenicity in the rice. Physical interaction between VemR and HrpG suggested cross-talk interaction between CheA/VemR- and HpaS/HrpG-mediated signal transduction events orchestrating the hrp gene expression.
RESUMO
The Gram-negative bacterium Xanthomonas translucens infects a wide range of gramineous plants with a notable impact on small grain cereals. However, genomics-informed intra-species population structure and virulence repertories of the pathogen have rarely been investigated. In this study, the complete genome sequences of seven X. translucens strains representing an entire set of genetic diversity of two pathovars X. translucens pv. undulosa and X. translucens pv. translucens is provided and compared with those of seven publicly available complete genomes of the pathogen. Organization of the 25 type III secretion system genes in all the 14 X. translucens strains was exactly the same, while TAL effector genes localized singly or in clusters across four loci in X. translucens pv. translucens and five to six loci in X. translucens pv. undulosa. Beside two previously unreported endogenous plasmids in X. translucens pv. undulosa, and variations in repeat variable diresidue (RVD) of the 14 strains, tal1a of X. translucens pv. translucens strain XtKm8 encode the new RVDs HE and YI which have not previously been reported in xanthomonads. Further, a number of truncated tal genes were predicted among the 14 genomes lacking conserved BamHI site at N-terminus and SphI site at C-terminus. Our data have doubled the number of complete genomes of X. translucens clarifying the population structure and genomics of the pathogen to pave the way in the small grain cereals industry for disease resistance breeding in the 21st century's agriculture.
RESUMO
Xanthomonas translucens pv. cerealis (Xtc) causes bacterial leaf streak (BLS) of important cereal crops, including wheat (Triticum aestivum) and barley (Hordeum vulgare). Transcription activator-like effectors (TALEs) play vital roles in many plant diseases caused by Xanthomonas spp., however, TALEs have not been previously characterized in Xtc. In this study, the whole genome of NXtc01, a virulent strain of Xtc from Xinjiang, China, was sequenced and compared with genomes of other Xanthomonas spp. Xtc NXtc01 consists of a single 4,622,298 bp chromosome that encodes 4,004 genes. Alignment of the NXtc01 sequence with the draft genome of Xtc strain CFBP 2541 (United States) revealed a single giant inversion and differences in the location of two tal genes, which were designated tal1 and tal2. In NXtc01, both tal genes are located on the chromosome, whereas tal2 is plasmid-encoded in CFBP 2541. The repeat variable diresidues (RVDs) at the 12th and 13th sites within Tal2 repeat units were identical in both strains, whereas Tal1 showed differences in the third RVD. Xtc NXtc01 and CFBP 2541 encoded 35 and 33 non-TALE type III effectors (T3Es), respectively. tal1, tal2, and tal-free deletion mutants of Xtc NXtc01 were constructed and evaluated for virulence. The tal1 and tal-free deletion mutants were impaired with respect to symptom development and growth in wheat, suggesting that tal1 is a virulence factor in NXtc01. This was confirmed in gain-of-function experiments that showed the introduction of tal1, but not tal2, restored virulence to the tal-free mutant. Furthermore, we generated a hrcC deletion mutant of NXtc01; the hrcC mutant was non-pathogenic on wheat and unable to elicit a hypersensitive response in the non-host Nicotiana benthamiana. Our data provide a platform for exploring the roles of both TALEs and non-TALEs in promoting BLS on wheat.
RESUMO
Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, employs the transcription activator-like effectors (TALEs) to induce the expression of the OsSWEET family of putative sugar transporter genes, which function in conferring disease susceptibility (S) in rice plants. To engineer broad-spectrum bacterial blight resistance, we used CRISPR/Cas9-mediated gene editing to disrupt the TALE-binding elements (EBEs) of two S genes, OsSWEET11 and OsSWEET14, in rice cv. Kitaake, which harbors the recessive resistance allele of Xa25/OsSWEET13. The engineered rice line MS14K exhibited broad-spectrum resistance to most Xoo strains with a few exceptions, suggesting that the compatible strains may contain new TALEs. We identified two PthXo2-like TALEs, Tal5LN18 and Tal7PXO61, as major virulence factors in the compatible Xoo strains LN18 and PXO61, respectively, and found that Xoo encodes at least five types of PthXo2-like effectors. Given that PthXo2/PthXo2.1 target OsSWEET13 for transcriptional activation, the genomes of 3000 rice varieties were analyzed for EBE variationsin the OsSWEET13 promoter, and 10 Xa25-like haplotypes were identified. We found that Tal5LN18 and Tal7PXO61 bind slightly different EBE sequences in the OsSWEET13 promoter to activate its expression. CRISPR/Cas9 technology was then used to generate InDels in the EBE of the OsSWEET13 promoter in MS14K to creat a new germplasm with three edited OsSWEET EBEs and broad-spectrum resistance against all Xoo strains tested. Collectively, our findings illustrate how to disarm TALE-S co-evolved loci to generate broad-spectrum resistance through the loss of effector-triggered susceptibility in plants.
Assuntos
Resistência à Doença/genética , Edição de Genes/métodos , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Predisposição Genética para Doença , Mutação , Oryza/imunologia , Doenças das Plantas/imunologiaRESUMO
Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo) cause bacterial leaf streak (BLS) and bacterial leaf blight (BLB) in rice, respectively. Unlike Xoo, endogenous avirulence-resistance (avr-R) gene interactions have not been identified in the Xoc-rice pathosystem; however, both pathogens possess transcription activator-like effectors (TALEs) that are known to modulate R or S genes in rice. The transfer of individual tal genes from Xoc RS105 (hypervirulent) into Xoc YNB0-17 (hypovirulent) led to the identification of tal7, which suppressed avrXa7-Xa7 mediated defense in rice containing an Xa7 R gene. Mobility shift and microscale thermophoresis assays showed that Tal7 bound two EBE sites in the promoters of two rice genes, Os09g29100 and Os12g42970, which encode predicted Cyclin-D4-1 and GATA zinc finger family protein, respectively. Assays using designer TALEs and a TALE-free strain of Xoo revealed that Os09g29100 was the biologically relevant target of Tal7. Tal7 activates the expression of rice gene Os09g29100 that suppresses avrXa7-Xa7 mediated defense in Rice. TALEN editing of the Tal7-binding site in the Os09g29100 gene promoter further enhanced resistance to the pathogen Xoc RS105. The suppression of effector-trigger immunity (ETI) is a phenomenon that may contribute to the scarcity of BLS resistant cultivars.