Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Med Genet ; 10(3): 144-158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37501756

RESUMO

Background Hepatocellular carcinoma (HCC) is one of the leading causes of death from cancer worldwide. The histopathological features, risk factors, and prognosis of HCC caused by nonalcoholic fatty liver disease (NAFLD) appear to be significantly different from those of HCC caused by other etiologies of liver disease. Objective This article explores the shared gene and molecular mechanism between NAFLD and HCC through bioinformatics technologies such as weighted gene co-expression network analysis (WGCNA), so as to provide a reference for comprehensive understanding and treatment of HCC caused by NAFLD. Methods NAFLD complementary deoxyribonucleic acid microarrays (GSE185051) from the Gene Expression Omnibus database and HCC ribonucleic acid (RNA)-sequencing data (RNA-seq data) from The Cancer Genome Atlas database were used to analyze the differentially expressed genes (DEGs) between NAFLD and HCC. Then, the clinical traits and DEGs in the two disease data sets were analyzed by WGCNA to obtain W-DEGs, and cross-W-DEGs were obtained by their intersection. We performed subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses of the cross-W-DEGs and established protein-protein interaction networks. Then, we identified the hub genes in them by Cytoscape and screened out the final candidate genes. Finally, we validated candidate genes by gene expression, survival, and immunohistochemical analyses. Results The GO analysis of 79 cross-W-DEGs showed they were related mainly to RNA polymerase II (RNAP II) and its upstream transcription factors. KEGG analysis revealed that they were enriched predominantly in inflammation-related pathways (tumor necrosis factor and interleukin-17). Four candidate genes (JUNB, DUSP1, NR4A1, and FOSB) were finally screened out from the cross-W-DEGs. Conclusion JUNB, DUSP1, NR4A1, and FOSB inhibit NAFLD and HCC development and progression. Thus, they can serve as potential useful biomarkers for predicting and treating NAFLD progression to HCC.

2.
Saudi Med J ; 35(5): 435-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24825802

RESUMO

OBJECTIVE: To observe the effect of transfecting the gene human insulin-like growth factor (hIGF)-1 into human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) via non-viral vector. METHODS: This study was performed in the Affiliated Hospital of Qingdao University, Qingdao, China from June 2012 to May 2013. Twelve hUCB samples were harvested, and isolated in lymphocyte separation medium, and then cultured. Surface antigen expression in MSCs was detected by flow cytometry. Recombinant plasmid pIRES2-enhanced green fluorescent protein (EGFP)-hIGF-1 was transfected into MSCs by X-treme GENE HP DNA transfection reagent. Then, EGFP was observed with reverse fluorescent microscope at different time points. Enzyme-linked immunosorbent assay was used to determine the hIGF-1 protein concentration in supernatants. Immunofluorescence microscopy and reverse transcription polymerase chain reaction were used to detect the expression of hIGF-1 in the hUCB-MSCs. Expression of type II collagen was detected by immunohistochemistry staining. RESULTS: Transfection efficiency was 28.74 +/- 7.31%. The cluster of differentiation (CD)90, CD105, and CD146 expression increased CD34, CD45, and anti-HLA-DR expression decreased. Results of immunofluorescence microscopy and RT-PCR confirmed expression of the hIGF-1 gene. The hIGF-1 protein concentration in the supernatants showed a peak level at 34.63 +/- 1.61 ng/ml 48 hours after transfection. Immunohistochemical analysis of transfected hUCB-MSCs proved that type II collagen could be expressed positively. CONCLUSION: Human IGF-1 gene can be transfected into hUCB-MSCs, and expressed at a high level with subsequent expression of type II collagen.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Células-Tronco Mesenquimais/metabolismo , Transfecção , Cordão Umbilical/metabolismo , Sequência de Bases , Primers do DNA , Humanos , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA