RESUMO
OBJECTIVE: All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. METHODS: JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3-dependent (interleukin-2 [IL-2]) and -independent (IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation. In vivo, off-target signaling was measured by IL-22- and erythropoietin (EPO)-mediated models, while on-target signaling was measured by IL-2-mediated signaling. Efficacy of JAK-3 inhibitors was determined using delayed-type hypersensitivity (DTH) and collagen-induced arthritis (CIA) models in mice. RESULTS: In vitro, WYE-151650 potently suppressed IL-2-induced STAT-5 phosphorylation and cell proliferation, while exhibiting 10-29-fold less activity against JAK-3-independent IL-6- or GM-CSF-induced STAT phosphorylation. Ex vivo, WYE-151650 suppressed IL-2-induced STAT phosphorylation, but not IL-6-induced STAT phosphorylation, as measured in whole blood. In vivo, WYE-151650 inhibited JAK-3-mediated IL-2-induced interferon-gamma production and decreased the natural killer cell population in mice, while not affecting IL-22-induced serum amyloid A production or EPO-induced reticulocytosis. WYE-151650 was efficacious in mouse DTH and CIA models. CONCLUSION: In vitro, ex vivo, and in vivo assays demonstrate that WYE-151650 is efficacious in mouse CIA despite JAK-3 selectivity. These data question the need to broadly inhibit JAK-1-, JAK-2-, or Tyk-2-dependent cytokine pathways for efficacy.
Assuntos
Artrite Experimental/tratamento farmacológico , Janus Quinase 3/antagonistas & inibidores , Análise de Variância , Animais , Artrite Experimental/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinase 3/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
PF-06651600, a newly discovered potent JAK3-selective inhibitor, is highly efficacious at inhibiting γc cytokine signaling, which is dependent on both JAK1 and JAK3. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Importantly, by sparing JAK1 function, PF-06651600 selectively targets γc cytokine pathways while preserving JAK1-dependent anti-inflammatory signaling such as the IL-10 suppressive functions following LPS treatment in macrophages and the suppression of TNFα and IL-1ß production in IL-27-primed macrophages. Thus, JAK3-selective inhibition differentiates from pan-JAK or JAK1 inhibition in various immune cellular responses, which could potentially translate to advantageous clinical outcomes in inflammatory and autoimmune diseases.
Assuntos
Artrite Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Artrite Experimental/imunologia , Modelos Animais de Doenças , Descoberta de Drogas , Encefalomielite Autoimune Experimental/imunologia , Humanos , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 3/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) that can be induced in susceptible mice by the transfer of autoreactive T cells that recognize myelin basic protein (MBP). The onset and subsequent recovery from disease are associated with distinct patterns of cytokine and chemokine expression within the inflammatory lesions of the CNS. Given the likely importance of the local cytokine milieu in regulating the disease process, it would be preferable to administer cytokines locally to the CNS and reduce systemic delivery in order to evaluate their immunoregulatory roles in EAE. For this purpose, we have used retrovirally transduced T cells from MBP-specific T cell receptor transgenic mice in an attempt to target cytokine delivery to the CNS where MBP is primarily expressed. We have found that T cells expressing granulocyte macrophage colony-stimulating factor (GM-CSF) induce severe, chronic EAE from which mice fail to recover. Our results indicate that increased local GM-CSF expression could play an important role in inducing chronic EAE.
Assuntos
Encefalomielite Autoimune Experimental/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Retroviridae/genética , Linfócitos T/fisiologia , Animais , Antígenos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/fisiologia , RNA Mensageiro/biossíntese , Transdução GenéticaRESUMO
Acidic mammalian chitinase (AMCase), an enzyme implicated in the pathology of asthma, is capable of chitin cleavage at a low pH optimum. The corresponding gene (CHIA) can be found in genome databases of a variety of mammals, but the enzyme properties of only the human and mouse proteins were extensively studied. We wanted to compare enzymes of closely related species, such as humans and macaques. In our attempt to study macaque AMCase, we searched for CHIA-like genes in human and macaque genomes. We found that both genomes contain several additional CHIA-like sequences. In humans, CHIA-L1 (hCHIA-L1) is an apparent pseudogene and has the highest homology to CHIA. To determine which of the two genes is functional in monkeys, we assessed their tissue expression levels. In our experiments, CHIA-L1 expression was not detected in human stomach tissue, while CHIA was expressed at high levels. However, in the cynomolgus macaque stomach tissue, the expression pattern of these two genes was reversed: CHIA-L1 was expressed at high levels and CHIA was undetectable. We hypothesized that in macaques CHIA-L1 (mCHIA-L1), and not CHIA, is a gene encoding an acidic chitinase, and cloned it, using the sequence of human CHIA-L1 as a guide for the primer design. We named the new enzyme MACase (Macaca Acidic Chitinase) to emphasize its differences from AMCase. MACase shares a similar tissue expression pattern and pH optimum with human AMCase, but is 50 times more active in our enzymatic activity assay. DNA sequence of the mCHIA-L1 has higher percentage identity to the human pseudogene hCHIA-L1 (91.7%) than to hCHIA (84%). Our results suggest alternate evolutionary paths for human and monkey acidic chitinases.
Assuntos
Quitinases/genética , Evolução Molecular , Macaca fascicularis/genética , Macaca mulatta/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Quitina/metabolismo , Quitinases/química , Quitinases/metabolismo , Sequência Conservada , Bases de Dados Genéticas , Regulação Enzimológica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Especificidade de Órgãos , Alinhamento de SequênciaRESUMO
Human acidic mammalian chitinase (AMCase), a member of the family 18 glycosyl hydrolases, is one of the important proteins involved in Th2-mediated inflammation and has been implicated in asthma and allergic diseases. Inhibition of AMCase results in decreased airway inflammation and airway hyper-responsiveness in a mouse asthma model, suggesting that the AMCase activity is a part of the mechanism of Th2 cytokine-driven inflammatory response in asthma. In this paper, we report the first detailed kinetic characterization of recombinant human AMCase. In contrast with mouse AMCase that has been reported to have a major pH optimum at 2 and a secondary pH optimum around 3-6, human AMCase has only one pH optimum for k(cat)/K(m) between pH 4 and 5. Steady state kinetics shows that human AMCase has "low" intrinsic transglycosidase activity, which leads to the observation of apparent substrate inhibition. This slow transglycosylation may provide a mechanism in vivo for feedback regulation of the chitinase activity of human AMCase. HPLC characterization of cleavage of chitooligosaccharides (4-6-mers) suggests that human AMCase prefers the beta anomer of chitooligosaccharides as substrate. Human AMCase also appears to cleave chitooligosaccharides from the nonreducing end primarily by disaccharide units. Ionic strength modulates the enzymatic activity and substrate cleavage pattern of human AMCase against fluorogenic substrates, chitobiose-4-methylumbelliferyl and chitotriose-4-methylumbelliferyl, and enhances activity against chitooligosaccharides. The physiological implications of these results are discussed.