Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.317
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
2.
N Engl J Med ; 390(23): 2178-2190, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899695

RESUMO

BACKGROUND: Immune thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibody-mediated platelet destruction. Treatment with CM313, a novel anti-CD38 monoclonal antibody, can result in targeted clearance of CD38-positive cells, including plasma cells. METHODS: We conducted a phase 1-2, open-label study to evaluate the safety and efficacy of CM313 in adult patients with ITP. CM313 was administered intravenously at a dose of 16 mg per kilogram of body weight every week for 8 weeks, followed by a 16-week follow-up period. The primary outcomes were adverse events and documentation of two or more consecutive platelet counts of at least 50×109 per liter within 8 weeks after the first dose of CM313. The status of peripheral-blood immune cells in patients and changes in the mononuclear phagocytic system in passive mouse models of ITP receiving anti-CD38 therapy were monitored. RESULTS: Of the 22 patients included in the study, 21 (95%) had two consecutive platelet counts of at least 50×109 per liter during the treatment period, with a median cumulative response duration of 23 weeks (interquartile range, 17 to 24). The median time to the first platelet count of at least 50×109 per liter was 1 week (range, 1 to 3). The most common adverse events that occurred during the study were infusion-related reaction (in 32% of the patients) and upper respiratory tract infection (in 32%). After CD38-targeted therapy, the percentage of CD56dimCD16+ natural killer cells, the expression of CD32b on monocytes in peripheral blood, and the number of macrophages in the spleen of the passive mouse models of ITP all decreased. CONCLUSIONS: In this study, anti-CD38 targeted therapy rapidly boosted platelet levels by inhibiting antibody-dependent cell-mediated cytotoxicity on platelets, maintained long-term efficacy by clearing plasma cells, and was associated with mainly low-grade toxic effects. (Funded by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences and others; ClinicalTrials.gov number, NCT05694767).


Assuntos
Anticorpos Monoclonais , Púrpura Trombocitopênica Idiopática , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/imunologia
3.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197664

RESUMO

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Assuntos
Bass , Rhabdoviridae , Vacinas , Animais , Feminino , Simulação de Acoplamento Molecular , Epitopos , Glicoproteínas , Desenvolvimento de Vacinas
4.
J Immunol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975727

RESUMO

Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.

5.
J Immunol ; 211(5): 895-902, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459051

RESUMO

IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells and has a potential to be used as a therapeutic for cancer. We have recently demonstrated that administration of IL-27 producing adeno-associated virus (AAV-IL-27) exhibits potent inhibition of tumor growth in mouse models. In this study, we demonstrate that AAV-IL-27 treatment leads to significant expansion of CD11b+Gr1+ myeloid cells. AAV-IL-27-induced expansion of CD11b+Gr1+ cells is IL-27R-dependent and requires Stat3 signaling, but it is inhibited by Stat1 signaling. AAV-IL-27 treatment does not increase the self-renewal capacity of CD11b+Gr1+ cells but induces significant expansion of Lin-Sca1+c-Kit+ (LSK) and granulocyte-monocyte progenitor cells. Despite exhibiting significant suppression of T cells in vitro, IL-27-induced CD11b+Gr1+ cells lost the tumor-promoting activity in vivo and overall play an antitumor role. In tumors from AAV-IL-27-treated mice, CD11b+Gr1+ cells are largely F4/80+ and express high levels of MHC class I/II and M1 macrophage markers. Thus, IL-27 gene therapy induces Stat3-mediated expansion of CD11b+Gr1+ myeloid cells and promotes accumulation of M1 macrophages in the tumor microenvironment.


Assuntos
Interleucina-27 , Camundongos , Animais , Microambiente Tumoral , Macrófagos , Células Mieloides , Linfócitos T , Antígeno CD11b
6.
Nano Lett ; 24(14): 4117-4123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38509030

RESUMO

Magnetic skyrmions, topologically nontrivial whirling spin textures at nanometer scales, have emerged as potential information carriers for spintronic devices. The ability to efficiently create and erase magnetic skyrmions is vital yet challenging for such applications. Based on first-principles studies, we find that switching between intrinsic magnetic skyrmion and high-temperature ferromagnetic states can be achieved in the two-dimensional van der Waals (vdW) multiferroic heterostructure CrSeI/In2Te3 by reversing the ferroelectric polarization of In2Te3. The core mechanism of this switching is traced to the controllable magnetic anisotropy of CrSeI influenced by the ferroelectric polarization of In2Te3. We propose a useful descriptor linking the presence of magnetic skyrmions to magnetic parameters and validate this connection through studies of a variety of similar vdW multiferroic heterostructures. Our work demonstrates that manipulating magnetic skyrmions via tunable magnetic anisotropies in vdW multiferroic heterostructures represents a highly promising and energy-efficient strategy for the future development of spintronics.

7.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38654452

RESUMO

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Assuntos
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Família Multigênica , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
8.
J Hepatol ; 80(6): 928-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336346

RESUMO

BACKGROUND & AIMS: Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS: Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS: Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS: SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION: We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.


Assuntos
Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Camundongos Knockout , Proteína da Região Y Determinante do Sexo , Animais , Masculino , Feminino , Camundongos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Humanos , Hepatócitos/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Células Estreladas do Fígado/metabolismo , Caracteres Sexuais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/efeitos adversos , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças
9.
J Hepatol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759889

RESUMO

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.

10.
Br J Haematol ; 204(6): 2418-2428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513635

RESUMO

This study aimed to identify key proteomic analytes correlated with response to splenectomy in primary immune thrombocytopenia (ITP). Thirty-four patients were retrospectively collected in the training cohort and 26 were prospectively enrolled as validation cohort. Bone marrow biopsy samples of all participants were collected prior to the splenectomy. A total of 12 modules of proteins were identified by weighted gene co-expression network analysis (WGCNA) method in the developed cohort. The tan module positively correlated with megakaryocyte counts before splenectomy (r = 0.38, p = 0.027), and time to peak platelet level after splenectomy (r = 0.47, p = 0.005). The blue module significantly correlated with response to splenectomy (r = 0.37, p = 0.0031). KEGG pathways analysis found that the PI3K-Akt signalling pathway was predominantly enriched in the tan module, while ribosomal and spliceosome pathways were enriched in the blue module. Machine learning algorithm identified the optimal combination of biomarkers from the blue module in the training cohort, and importantly, cofilin-1 (CFL1) was independently confirmed in the validation cohort. The C-index of CFL1 was >0.7 in both cohorts. Our results highlight the use of bone marrow proteomics analysis for deriving key analytes that predict the response to splenectomy, warranting further exploration of plasma proteomics in this patient population.


Assuntos
Aprendizado de Máquina , Proteômica , Púrpura Trombocitopênica Idiopática , Esplenectomia , Humanos , Masculino , Feminino , Proteômica/métodos , Púrpura Trombocitopênica Idiopática/cirurgia , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/genética , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Estudos Retrospectivos
11.
Br J Haematol ; 204(6): 2405-2417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438130

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.


Assuntos
Aprendizado de Máquina , Metabolômica , Púrpura Trombocitopênica Idiopática , Humanos , Púrpura Trombocitopênica Idiopática/metabolismo , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/sangue , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Metabolômica/métodos , Adulto , Idoso , Biomarcadores , Metaboloma , Redes e Vias Metabólicas , Resultado do Tratamento , Medula Óssea/metabolismo , Medula Óssea/patologia
12.
Small ; : e2402483, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822719

RESUMO

Phosphorus is regarded as a promising material for high-performance lithium-ion batteries (LIBs) due to its high theoretical capacity, appropriate lithiation potential, and low lithium-ion diffusion barrier. Phosphorus/carbon composites (PC) are engineered to serve as high-capacity high-rate anodes; the interaction between phosphorus and carbon, long-term capacity retention, and safety problems are important issues that must be well addressed simultaneously. Herein, an in situ polymerization approach to fabricate a poly-melamine-hybridized (pMA) phosphorus/carbon composite (pMA-PC) is employed. The pMA hybridization enhances the density and electrical conductivity of the PC, improves the structural integrity, and facilitates stable electron transfer within the pMA-PC composite. Moreover, the pMA-PC composite exhibits efficient adsorption of lithium polysulfides, enabling stable transport of Li+ ions. Therefore, the pMA-PC anode demonstrates a high specific charging capacity of 1,381 mAh g-1 at 10 A g-1, and a great capacity retention of 86.7% at 1 A g-1 over 500 cycles. The synergistic effect of phosphorus and nitrogen further confers excellent flame retardant properties to the pMA-PC anode, including self-extinguishing in 2.5 s, and a much lower combustion temperature than PC. The enhanced capacity and safety performance of pMA-PC show potential in future high-capacity and high-rate LIBs.

13.
Small ; 20(30): e2310276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431964

RESUMO

Violet phosphorus (VP) has attracted a lot of attention for its unique physicochemical properties and emerging potential in photoelectronic applications. Although VP has a van der Waals (vdW) structure similar to that of other 2D semiconductors, direct synthesis of VP on a substrate is still challenging. Moreover, optoelectronic devices composed of transfer-free VP flakes have not been demonstrated. Herein, a bismuth-assisted vapor phase transport technique is designed to grow uniform single-crystal VP flakes on the SiO2/Si substrate directly. The size of the crystalline VP flakes is an order of magnitude larger than that of previous liquid-exfoliated samples. The photodetector fabricated with the VP flakes shows a high responsivity of 12.5 A W-1 and response/recovery time of 3.82/3.03 ms upon exposure to 532 nm light. Furthermore, the photodetector shows a small dark current (<1 pA) that is beneficial to high-sensitivity photodetection. As a result, the detectivity is 1.38 × 1013 Jones that is comparable with that of the vdW p-n heterojunction detector. The results reveal the great potential of VP in optoelectronic devices as well as the CVT technique for the growth of single-crystal semiconductor thin films.

14.
Small ; : e2402004, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686672

RESUMO

The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.

15.
J Virol ; 97(4): e0005023, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975794

RESUMO

Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.


Assuntos
Formação de Anticorpos , Doenças dos Peixes , Infecções por Vírus de RNA , Tilápia , Vacinas Virais , Técnicas de Visualização da Superfície Celular , Simulação por Computador , Epitopos/imunologia , Vacinas Virais/imunologia , Formação de Anticorpos/imunologia , Tilápia/virologia , Linhagem Celular , Vírus de RNA/imunologia , Animais , Anticorpos Antivirais/sangue , Imunidade Humoral/imunologia , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia
16.
J Virol ; 97(10): e0093823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792003

RESUMO

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
17.
PLoS Pathog ; 18(2): e1009986, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139135

RESUMO

The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.


Assuntos
Antivirais/farmacologia , Produtos do Gene rev/metabolismo , Vírus da Anemia Infecciosa Equina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Metab Eng ; 82: 250-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428728

RESUMO

Gastrodin, a phenolic glycoside, is a prominent component of Gastrodia elata, which is renowned for its sedative, hypnotic, anticonvulsant, and neuroprotective activities. Engineering heterologous production of plant natural products in microbial host represents a safe, cost-effective, and scalable alternative to plant extraction. Here, we present the construction of an engineered Yarrowia lipolytica yeast that achieves a high-titer production of gastrodin. We systematically refactored the yeast genome by enhancing the flux of the shikimate pathway and optimizing the glucosyl transfer system. We introduced more than five dozen of genetic modifications onto the yeast genome, including enzyme screening, alleviation of rate-limiting steps, promoter selection, genomic integration site optimization, downregulation of competing pathways, and elimination of gastrodin degradation. Meanwhile, we developed a Copper-induced Antisense-Transcriptional Regulation (CATR) tool. The developed CATR toolkit achieved dynamic repression and activation of violacein synthesis through the addition of copper in Y. lipolytica. This strategy was further used to dynamically regulate the pyruvate kinase node to effectively redirect glycolytic flux towards the shikimate pathway while maintaining cell growth at proper rate. Taken together, these efforts resulted in 9477.1 mg/L of gastrodin in shaking flaks and 13.4 g/L of gastrodin with a yield of 0.149 g/g glucose in a 5-L bioreactor, highlighting the potential for large-scale and sustainable production of gastrodin from microbial fermentation.


Assuntos
Cobre , Yarrowia , Ácido Chiquímico , Glucosídeos , Álcoois Benzílicos , Yarrowia/genética
19.
Am J Pathol ; 193(8): 1059-1071, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164274

RESUMO

Unexplained recurrent spontaneous abortion (URSA) has been associated with the dysfunction of trophoblasts and decidual macrophages. Current evidence suggests that profilin1 (PFN1) plays an important role in many biological processes. However, little is known about whether PFN1 is related to URSA. Herein, the location of PFN1 was detected by immunohistochemistry, and the level of PFN1 was detected by quantitative real-time PCR, Western blot analysis, and immunohistochemistry. The proliferation of trophoblasts was detected by CCK8 and 5-ethynyl-2'-deoxyuridine assays, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays were used to detect apoptosis of trophoblasts. The migration and invasion ability of trophoblasts was assessed by using the wound-healing test and transwell test. Polarization of macrophages was detected in macrophages cultured in trophoblast conditioned medium. PFN1 expression was observed in cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts and was decreased in the villous tissue of patients with URSA. The migration and invasion ability and cell viability of trophoblastic cell lines that underwent PFN1 knockdown significantly decreased, and apoptosis increased. Opposite findings were observed after the overexpression of PFN1 in trophoblastic cells. In addition, PFN1 could regulate trophoblast function through phosphatidylinositol 3-kinase/AKT signal transduction rather than mitogen-activated protein kinase signaling pathways. Finally, knockdown of PFN1 in trophoblasts promoted tumor necrosis factor-α secretion to induce macrophage polarization to M1 phenotype, mediated by the NF-κB signaling pathway. These findings indicate that PFN1 has a broad therapeutic potential for patients with URSA.


Assuntos
Aborto Espontâneo , Trofoblastos , Gravidez , Humanos , Feminino , Trofoblastos/metabolismo , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Aborto Espontâneo/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Profilinas/genética , Profilinas/metabolismo
20.
Appl Environ Microbiol ; 90(4): e0000824, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38506527

RESUMO

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Assuntos
Aspergillus niger , Fumarato Hidratase , Fumaratos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Malatos/metabolismo , Ácido Succínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA