Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963566

RESUMO

Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface Wheat germ agglutinin (WGA) staining. In the presence of penfluridol, cell membrane glycoproteins PD-L1 shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between PD-1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the anti-tumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in anti-tumor therapy through activation of T-cell immunity.

2.
Open Biol ; 12(4): 210310, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35472288

RESUMO

Cigarette smoke significantly induces oxidative stress, resulting in cardiovascular disease. NRF2, a well-known antioxidative stress response factor, is generally considered to play protective roles in cardiovascular dysfunction triggered by oxidative stress. Interestingly, recent studies reported adverse effects of NRF2 on the cardiovascular system. These unfavourable pathogenic effects of NRF2 need to be further investigated. Our work shows that cigarette smoke extract (CSE)-induced oxidative stress disturbs fibronectin (FN) assembly during angiogenesis. Furthermore, this effect largely depends on hyperactive NRF2-STAT3 signalling, which consequently promotes abnormal FN deposition. Consistently, disruption of this pathway by inhibiting NRF2 or STAT3 prevents CSE-induced FN disorganization and vasculature disruption in human umbilical vein endothelial cells or zebrafish. Taken together, these findings demonstrate the cardiovascular dysfunction caused by CSE from a novel perspective that NRF2-dependent signalling engages in FN disorganization.


Assuntos
Fumar Cigarros , Fator 2 Relacionado a NF-E2 , Animais , Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Nicotiana , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA