Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529726

RESUMO

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Assuntos
COVID-19/imunologia , COVID-19/mortalidade , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos B/imunologia , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Estudos de Coortes , Estado Terminal/mortalidade , Feminino , Humanos , Imunofenotipagem , Influenza Humana/imunologia , Lectinas Tipo C/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Gravidade do Paciente
2.
J Immunol ; 206(11): 2714-2724, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34011519

RESUMO

Human type 2 cytotoxic T (Tc2) cells are enriched in severe eosinophilic asthma and can contribute to airway eosinophilia. PGD2 and its receptor PGD2 receptor 2 (DP2) play important roles in Tc2 cell activation, including migration, cytokine production, and survival. In this study, we revealed novel, to our knowledge, functions of the PGD2/DP2 axis in Tc2 cells to induce tissue-remodeling effects and IgE-independent PGD2 autocrine production. PGD2 upregulated the expression of tissue-remodeling genes in Tc2 cells that enhanced the fibroblast proliferation and protein production required for tissue repair and myofibroblast differentiation. PGD2 stimulated Tc2 cells to produce PGD2 using the routine PGD2 synthesis pathway, which also contributed to TCR-dependent PGD2 production in Tc2 cells. Using fevipiprant, a specific DP2 antagonist, we demonstrated that competitive inhibition of DP2 not only completely blocked the cell migration, adhesion, proinflammatory cytokine production, and survival of Tc2 cells triggered by PGD2 but also attenuated the tissue-remodeling effects and autocrine/paracrine PGD2 production in Tc2 induced by PGD2 and other stimulators. These findings further confirmed the anti-inflammatory effect of fevipiprant and provided a better understanding of the role of Tc2 cells in the pathogenesis of asthma.


Assuntos
Ácidos Indolacéticos/farmacologia , Inflamação/tratamento farmacológico , Prostaglandina D2/antagonistas & inibidores , Piridinas/farmacologia , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Linfócitos T Citotóxicos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Humanos , Inflamação/imunologia , Prostaglandina D2/biossíntese , Receptores Imunológicos/imunologia , Receptores de Prostaglandina/imunologia , Linfócitos T Citotóxicos/imunologia
3.
Immunology ; 162(1): 17-29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888314

RESUMO

Since the discovery of neuromedin U (NmU) from porcine spinal cord in 1985, this neuropeptide has been subsequently identified in many other species with multiple physiological and pathophysiological roles detected, ranging from smooth muscle contraction, feeding, energy balance to tumorigenesis. Intriguingly, NmU is also emerging to play pro-inflammatory roles involving immune cell activation and cytokine release in a neuron-dependent or neuron-independent manner. The NmU-mediated inflammatory responses have already been observed in worm infection, sepsis, autoimmune arthritis and allergic animal models. In this review, we focus on the roles of NmU in immunity and inflammation by highlighting the interactions between NmU and immune cells, summarizing the signalling mechanism involved in their reactions and discussing its potential contributions to inflammatory diseases.


Assuntos
Imunidade/fisiologia , Inflamação/metabolismo , Neuropeptídeos/metabolismo , Animais , Citocinas/metabolismo , Humanos , Neurônios/metabolismo , Transdução de Sinais/fisiologia
4.
J Immunol ; 196(1): 45-54, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26582946

RESUMO

Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defense, epithelial repair, and lipid homeostasis. ILC2 lack rearranged Ag-specific receptors, and although many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with the microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of group 1 ILC and group 3 ILC and thought to be important for their effector function, but they have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human ILC2. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking Ab and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis, and incubation of keratinocytes with proinflammatory and type 2 cytokines upregulated B7-H6, leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases.


Assuntos
Antígenos B7/metabolismo , Dermatite Atópica/imunologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Anticorpos Bloqueadores/farmacologia , Proteínas Sanguíneas , Linhagem Celular , Citocinas/biossíntese , Citocinas/farmacologia , Epiderme/metabolismo , Galectina 3/farmacologia , Galectinas , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Queratinócitos/metabolismo , Células Matadoras Naturais/imunologia , Linfócitos/metabolismo , NF-kappa B/metabolismo , Receptor 3 Desencadeador da Citotoxicidade Natural/antagonistas & inibidores , Receptor 3 Desencadeador da Citotoxicidade Natural/biossíntese
5.
J Allergy Clin Immunol ; 140(4): 1090-1100.e11, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28115217

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are a potential innate source of type 2 cytokines in the pathogenesis of allergic conditions. Epithelial cytokines (IL-33, IL-25, and thymic stromal lymphopoietin [TSLP]) and mast cell mediators (prostaglandin D2 [PGD2]) are critical activators of ILC2s. Cysteinyl leukotrienes (cysLTs), including leukotriene (LT) C4, LTD4, and LTE4, are metabolites of arachidonic acid and mediate inflammatory responses. Their role in human ILC2s is still poorly understood. OBJECTIVES: We sought to determine the role of cysLTs and their relationship with other ILC2 stimulators in the activation of human ILC2s. METHODS: For ex vivo studies, fresh blood from patients with atopic dermatitis and healthy control subjects was analyzed with flow cytometry. For in vitro studies, ILC2s were isolated and cultured. The effects of cysLTs, PGD2, IL-33, IL-25, TSLP, and IL-2 alone or in combination on ILC2s were defined by using chemotaxis, apoptosis, ELISA, Luminex, quantitative RT-PCR, and flow cytometric assays. The effect of endogenous cysLTs was assessed by using human mast cell supernatants. RESULTS: Human ILC2s expressed the LT receptor CysLT1, levels of which were increased in atopic subjects. CysLTs, particularly LTE4, induced migration, reduced apoptosis, and promoted cytokine production in human ILC2s in vitro. LTE4 enhanced the effect of PGD2, IL-25, IL-33, and TSLP, resulting in increased production of type 2 and other proinflammatory cytokines. The effect of LTE4 was inhibited by montelukast, a CysLT1 antagonist. Interestingly, addition of IL-2 to LTE4 and epithelial cytokines significantly amplified ILC2 activation and upregulated expression of the receptors for IL-33 and IL-25. CONCLUSION: CysLTs, particularly LTE4, are important contributors to the triggering of human ILC2s in inflammatory responses, particularly when combined with other ILC2 activators.


Assuntos
Dermatite Atópica/imunologia , Células Epiteliais/imunologia , Leucotrieno E4/metabolismo , Linfócitos/imunologia , Mastócitos/imunologia , Prostaglandina D2/metabolismo , Adulto , Células Cultivadas , Citocinas/metabolismo , Ácidos Eicosanoicos/metabolismo , Feminino , Humanos , Imunidade Inata , Masculino , Células Th2/imunologia
6.
J Allergy Clin Immunol ; 135(5): 1358-66.e1-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25441644

RESUMO

BACKGROUND: Prostaglandin D2 (PGD2) and cysteinyl leukotrienes (cysLTs) are lipid mediators derived from mast cells, which activate TH2 cells. The combination of PGD2 and cysLTs (notably cysteinyl leukotriene E4 [LTE4]) enhances TH2 cytokine production. However, the synergistic interaction of cysLTs with PGD2 in promoting TH2 cell activation is still poorly understood. The receptors for these mediators are drug targets in the treatment of allergic diseases, and hence understanding their interaction is likely to have clinical implications. OBJECTIVE: We aimed to comprehensively define the roles of PGD2, LTE4, and their combination in activating human TH2 cells and how such activation might allow the TH2 cells to engage downstream effectors, such as neutrophils, which contribute to the pathology of allergic responses. METHODS: The effects of PGD2, LTE4, and their combination on human TH2 cell gene expression were defined by using a microarray, and changes in specific inflammatory pathways were confirmed by means of PCR array, quantitative RT-PCR, ELISA, Luminex, flow cytometry, and functional assays, including analysis of downstream neutrophil activation. Blockade of PGD2 and LTE4 was tested by using TM30089, an antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells, and montelukast, an antagonist of cysteinyl leukotriene receptor 1. RESULTS: PGD2 and LTE4 altered the transcription of a wide range of genes and induced diverse functional responses in TH2 cells, including cell adhesion, migration, and survival and cytokine production. The combination of these lipids synergistically or additively enhanced TH2 responses and, strikingly, induced marked production of diverse nonclassical TH2 inflammatory mediators, including IL-22, IL-8, and GM-CSF, at concentrations sufficient to affect neutrophil activation. CONCLUSIONS: PGD2 and LTE4 activate TH2 cells through different pathways but act synergistically to promote multiple downstream effector functions, including neutrophil migration and survival. Combined inhibition of both PGD2 and LTE4 pathways might provide an effective therapeutic strategy for allergic responses, particularly those involving interaction between TH2 cells and neutrophils, such as in patients with severe asthma.


Assuntos
Comunicação Celular/imunologia , Leucotrieno E4/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Prostaglandina D2/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Análise por Conglomerados , Sinergismo Farmacológico , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Leucotrieno E4/farmacologia , Neutrófilos/efeitos dos fármacos , Prostaglandina D2/farmacologia , Células Th2/efeitos dos fármacos
7.
J Allergy Clin Immunol ; 133(4): 1184-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24388011

RESUMO

BACKGROUND: Activation of the group 2 innate lymphoid cell (ILC2) population leads to production of the classical type 2 cytokines, thus promoting type 2 immunity. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2), is expressed by human ILC2s. However, the function of CRTH2 in these cells is unclear. OBJECTIVES: We sought to determine the role of PGD2 and CRTH2 in human ILC2s and compare it with that of the established ILC2 activators IL-25 and IL-33. METHODS: The effects of PGD2, IL-25, and IL-33 on the cell migration, cytokine production, gene regulation, and receptor expression of ILC2s were measured with chemotaxis, ELISA, Luminex, flow cytometry, quantitative RT-PCR, and QuantiGene assays. The effects of PGD2 under physiologic conditions were evaluated by using the supernatant from activated mast cells. RESULTS: PGD2 binding to CRTH2 induced ILC2 migration and production of type 2 cytokines and many other cytokines. ILC2 activation through CRTH2 also upregulated the expression of IL-33 and IL-25 receptor subunits (ST2 and IL-17RA). The effects of PGD2 on ILC2s could be mimicked by the supernatant from activated human mast cells and inhibited by a CRTH2 antagonist. CONCLUSIONS: PGD2 is an important and potent activator of ILC2s through CRTH2 mediating strong proallergic inflammatory responses. Through IgE-mediated mast cell degranulation, these innate cells can also contribute to adaptive type 2 immunity; thus CRTH2 bridges the innate and adaptive pathways in human ILC2s.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Prostaglandina D2/farmacologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Quimiotaxia/imunologia , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofenotipagem , Subpopulações de Linfócitos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Fenótipo , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética
10.
J Immunol ; 188(2): 694-702, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22174450

RESUMO

PGD(2) exerts a number of proinflammatory responses through a high-affinity interaction with chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and has been detected at high concentrations at sites of allergic inflammation. Because cysteinyl leukotrienes (cysLTs) are also produced during the allergic response, we investigated the possibility that cysLTs may modulate the response of human Th2 cells to PGD(2). PGD(2) induced concentration-dependent Th2 cytokine production in the absence of TCR stimulation. Leukotrienes D(4) and E(4) (LTE(4)) also stimulated the cytokine production but were much less active than PGD(2). However, when combined with PGD(2), cysLTs caused a greater than additive enhancement of the response, with LTE(4) being most effective in activating Th2 cells. LTE(4) enhanced calcium mobilization in response to PGD(2) in Th2 cells without affecting endogenous PGD(2) production or CRTH2 receptor expression. The effect of LTE(4) was inhibited by montelukast but not by the P2Y(12) antagonist methylthioadenosine 5'-monophosphate. The enhancing effect was also evident with endogenous cysLTs produced from immunologically activated mast cells because inhibition of cysLT action by montelukast or cysLT synthesis by MK886, an inhibitor of 5-lipoxygenase-activating protein, reduced the response of Th2 cells to the levels produced by PGD(2) alone. These findings reveal that cysLTs, in particular LTE(4), have a significant proinflammatory impact on T cells and demonstrate their effects on Th2 cells are mediated by a montelukast-sensitive receptor.


Assuntos
Citocinas/biossíntese , Leucotrieno E4/fisiologia , Ativação Linfocitária/imunologia , Prostaglandina D2/fisiologia , Células Th2/imunologia , Células Th2/patologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Sinergismo Farmacológico , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mastócitos/imunologia , Mastócitos/metabolismo , Células Th2/metabolismo
11.
Mucosal Immunol ; 17(4): 524-536, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38493955

RESUMO

Eosinophils are key effector cells mediating airway inflammation and exacerbation in patients with severe eosinophilic asthma. They are present in increased numbers and activation states in the airway mucosa and lumen. Interleukin-5 (IL-5) is the key eosinophil growth factor that is thought to play a role in eosinophil priming and activation. However, the mechanism of these effects is still not fully understood. The anti-IL-5 antibody mepolizumab reduces eosinophil counts in the airway modestly but has a large beneficial effect on the frequency of exacerbations of severe eosinophilic asthma, suggesting that reduction in eosinophil priming and activation is of central mechanistic importance. In this study, we used the therapeutic effect of mepolizumab and single-cell ribonucleic acid sequencing to investigate the mechanism of eosinophil priming and activation by IL-5. We demonstrated that IL-5 is a dominant driver of eosinophil priming and plays multifaceted roles in eosinophil function. It enhances eosinophil responses to other stimulators of migration, survival, and activation by activating phosphatidylinositol-3-kinases, extracellular signal-regulated kinases, and p38 mitogen-activated protein kinases signaling pathways. It also enhances the pro-fibrotic roles of eosinophils in airway remodeling via transforming growth factor-ß pathway. These findings provide a mechanistic understanding of eosinophil priming in severe eosinophilic asthma and the therapeutic effect of anti-IL-5 approaches in the disease.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Eosinófilos , Interleucina-5 , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/efeitos dos fármacos , Interleucina-5/metabolismo , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Índice de Gravidade de Doença , Eosinofilia/tratamento farmacológico , Eosinofilia/imunologia
12.
Nat Genet ; 35(3): 258-63, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14566338

RESUMO

Asthma is a common disease in children and young adults. Four separate reports have linked asthma and related phenotypes to an ill-defined interval between 2q14 and 2q32 (refs. 1-4), and two mouse genome screens have linked bronchial hyper-responsiveness to the region homologous to 2q14 (refs. 5,6). We found and replicated association between asthma and the D2S308 microsatellite, 800 kb distal to the IL1 cluster on 2q14. We sequenced the surrounding region and constructed a comprehensive, high-density, single-nucleotide polymorphism (SNP) linkage disequilibrium (LD) map. SNP association was limited to the initial exons of a solitary gene of 3.6 kb (DPP10), which extends over 1 Mb of genomic DNA. DPP10 encodes a homolog of dipeptidyl peptidases (DPPs) that cleave terminal dipeptides from cytokines and chemokines, and it presents a potential new target for asthma therapy.


Assuntos
Asma/genética , Cromossomos Humanos Par 2 , Sequência de Aminoácidos , Clonagem Molecular , Genótipo , Humanos , Repetições de Microssatélites/genética , Homologia de Sequência de Aminoácidos
14.
J Pharmacol Exp Ther ; 340(2): 473-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22106101

RESUMO

D prostanoid receptor 2 (DP2) [also known as chemoattractant receptor-homologous molecule expressed on T helper 2 (Th2) cells (CRTH2)] is selectively expressed by Th2 lymphocytes, eosinophils, and basophils and mediates recruitment and activation of these cell types in response to prostaglandin D2 (PGD2). (5-Fluoro-2-methyl-3-quinolin-2-ylmethylindo-1-yl)-acetic acid (OC000459) is an indole-acetic acid derivative that potently displaces [³H]PGD2 from human recombinant DP2 (K(i) = 0.013 µM), rat recombinant DP2 (K(i) = 0.003 µM), and human native DP2 (Th2 cell membranes; K(i) = 0.004 µM) but does not interfere with the ligand binding properties or functional activities of other prostanoid receptors (prostaglandin E1₋4 receptors, D prostanoid receptor 1, thromboxane receptor, prostacyclin receptor, and prostaglandin F receptor). OC000459 inhibited chemotaxis (IC50 = 0.028 µM) of human Th2 lymphocytes and cytokine production (IC50 = 0.019 µM) by human Th2 lymphocytes. OC000459 competitively antagonized eosinophil shape change responses induced by PGD2 in both isolated human leukocytes (pK(B) = 7.9) and human whole blood (pK(B) = 7.5) but did not inhibit responses to eotaxin, 5-oxo-eicosatetraenoic acid, or complement component C5a. OC000459 also inhibited the activation of Th2 cells and eosinophils in response to supernatants from IgE/anti-IgE-activated human mast cells. OC000459 had no significant inhibitory activity on a battery of 69 receptors and 19 enzymes including cyclooxygenase 1 (COX1) and COX2. OC000459 was found to be orally bioavailable in rats and effective in inhibiting blood eosinophilia induced by 13,14-dihydro-15-keto-PGD2 (DK-PGD2) in this species (ED50 = 0.04 mg/kg p.o.) and airway eosinophilia in response to an aerosol of DK-PGD2 in guinea pigs (ED50 = 0.01 mg/kg p.o.). These data indicate that OC000459 is a potent, selective, and orally active DP2 antagonist that retains activity in human whole blood and inhibits mast cell-dependent activation of both human Th2 lymphocytes and eosinophils.


Assuntos
Eosinófilos/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Mastócitos/imunologia , Antagonistas de Prostaglandina/farmacologia , Quinolinas/farmacologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Células Th2/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Ligação Competitiva , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/metabolismo , Forma Celular/efeitos dos fármacos , Forma Celular/imunologia , Quimiocina CCL11/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Complemento C5a/farmacologia , Cricetinae , Meios de Cultivo Condicionados/farmacologia , Eosinofilia/induzido quimicamente , Eosinofilia/prevenção & controle , Eosinófilos/citologia , Eosinófilos/imunologia , Cobaias , Humanos , Ácidos Indolacéticos/farmacocinética , Ácidos Indolacéticos/uso terapêutico , Interleucina-13/metabolismo , Interleucina-5/farmacologia , Leucotrieno B4/farmacologia , Ativação Linfocitária/imunologia , Mastócitos/metabolismo , Antagonistas de Prostaglandina/farmacocinética , Antagonistas de Prostaglandina/uso terapêutico , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Eosinofilia Pulmonar/induzido quimicamente , Eosinofilia Pulmonar/prevenção & controle , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Proteínas Recombinantes/metabolismo , Células Th2/citologia , Células Th2/imunologia , Células Th2/metabolismo , Transfecção
15.
Mucosal Immunol ; 15(5): 990-999, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810259

RESUMO

Type 2 immunity mediates the immune responses against parasites and allergic stimuli. Evidence from studies of cell lines and animals implies that neuromedin U (NmU) acts as a pro-inflammatory mediator of type 2 inflammation. However, the role of NmU in human type 2 immunity remains unclear. Here we investigated the expression of NmU in human blood and airways, and the expression of NmU receptors by human immune cells in blood and lung tissue. We detected human NmU (hNmU-25) in blood and airways with higher concentrations in the latter. NmU receptor 1 (NmUR1) was expressed by most human immune cells with higher levels in type 2 cells including type 2 T helpers, type 2 cytotoxic T cells, group-2 innate lymphoid cells and eosinophils, and was upregulated in lung-resident and activated type 2 cells. We also assessed the effects of NmU in these cells. hNmU-25 elicited type 2 cytokine production by type 2 lymphocytes and induced cell migration, including eosinophils. hNmU-25 also enhanced the type 2 immune response to other stimuli, particularly prostaglandin D2. These results indicate that NmU could contribute to the pathogenic processes of type 2 immunity-mediated diseases in humans via its pro-inflammatory effects on type 2 lymphocytes and eosinophils.


Assuntos
Imunidade Inata , Neuropeptídeos , Hormônios Peptídicos , Eosinófilos/imunologia , Humanos , Neuropeptídeos/imunologia , Linfócitos T/imunologia
16.
Wellcome Open Res ; 7: 173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935705

RESUMO

Background: Marked reductions in serum iron concentrations are commonly induced during the acute phase of infection. This phenomenon, termed hypoferremia of inflammation, leads to inflammatory anemia, but could also have broader pathophysiological implications. In patients with coronavirus disease 2019 (COVID-19), hypoferremia is associated with disease severity and poorer outcomes, although there are few reported cohorts. Methods: In this study, we leverage a well characterised prospective cohort of hospitalised COVID-19 patients and perform a set of analyses focussing on iron and related biomarkers and both acute severity of COVID-19 and longer-term symptomatology. Results: We observed no associations between acute serum iron and long-term outcomes (including fatigue, breathlessness or quality of life); however, lower haemoglobin was associated with poorer quality of life. We also quantified iron homeostasis associated parameters, demonstrating that among 50 circulating mediators of inflammation IL-6 concentrations were strongly associated with serum iron, consistent with its central role in inflammatory control of iron homeostasis. Surprisingly, we observed no association between serum hepcidin and serum iron concentrations. We also observed elevated erythroferrone concentrations in COVID-19 patients with anaemia of inflammation. Conclusions: These results enhance our understanding of the regulation and pathophysiological consequences of disturbed iron homeostasis during SARS-CoV-2 infection.

17.
J Immunol ; 182(12): 7580-6, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494281

RESUMO

It is now well established that interaction of PGD(2) with chemoattractant receptor- homologous molecule expressed on Th2 cells (CRTH2) promotes chemotaxis and proinflammatory cytokine production by Th2 lymphocytes. In this study we show a novel function of CRTH2 in mediating an inhibitory effect of PGD(2) on the apoptosis of human Th2 cells induced by cytokine deprivation. This effect was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD(2), inhibited by the CRTH2 antagonists ramatroban and TM30089, and not observed in CRTH2-negative T cells. D prostanoid receptor 1 (DP(1)) or the thromboxane-like prostanoid (TP) receptor did not play a role in mediating the effects of PGD(2) on the apoptosis of Th2 cells because neither the DP(1) antagonist BW868C nor the TP antagonist SQ29548 had any effect on the antiapoptotic effect of PGD(2). Apoptosis of Th2 cells induced by Fas ligation was not suppressed by treatment with PGD(2), illustrating that activation of CRTH2 only inhibits apoptosis induced by cytokine deprivation. Treatment with PGD(2) induced phosphorylation of Akt and BAD, prevented release of cytochrome c from mitochondria, and suppressed cleavage of caspase-3 and poly(ADP-ribose) polymerase in Th2 cells deprived of IL-2. The PI3K inhibitor LY294002 blocked the effect of PGD(2) both on the signaling events and on the apoptotic death of Th2 cells. These data suggest that in addition to promoting the recruitment and activation of Th2 cells, PGD(2) may also impede the resolution of allergic inflammation through inhibiting apoptosis of Th2 cells.


Assuntos
Apoptose/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Células Th2/citologia , Células Th2/imunologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Humanos , Interleucina-2/farmacologia , Prostaglandina D2/farmacologia , Transdução de Sinais , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Receptor fas/metabolismo
19.
Allergy Asthma Clin Immunol ; 17(1): 67, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238349

RESUMO

BACKGROUND: A significant portion of COVID-19 sufferers have asthma. The impacts of asthma on COVID-19 progression are still unclear but a modifying effect is plausible as respiratory viruses are acknowledged to be an important trigger for asthma exacerbations and a different, potentially type-2 biased, immune response might occur. In this study, we compared the blood circulating cytokine response to COVID-19 infection in patients with and without asthma. METHODS: Plasma samples and clinical information were collected from 80 patients with mild (25), severe (36) or critical (19) COVID-19 and 29 healthy subjects at the John Radcliffe Hospital, Oxford, UK. The concentrations of 51 circulating proteins in the plasma samples were measured with Luminex and compared between groups. RESULTS: Total 16 pre-existing asthma patients were found (3 in mild, 10 in severe, and 3 in critical COVID-19). The prevalence of asthma in COVID-19 severity groups did not suggest a clear correlation between asthma and COVID-19 severity. Within the same COVID-19 severity group, no differences were observed between patients with or without asthma on oxygen saturation, CRP, neutrophil counts, and length of hospital stay. The mortality in the COVID-19 patients with asthma (12.5%) was not higher than that in patients without asthma (17.2%). No significant difference was found between asthmatic and non-asthmatic in circulating cytokine response in different COVID-19 severity groups, including the cytokines strongly implicated in COVID-19 such as CXCL10, IL-6, CCL2, and IL-8. CONCLUSIONS: Pre-existing asthma was not associated with an enhanced cytokine response after COVID-19 infection, disease severity or mortality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA