Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Blood Press Res ; 49(1): 196-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38368866

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is a common clinical syndrome associated with high morbidity and mortality. Inhibition of the methyltransferase enhancer of zeste homolog 2 (EZH2) by its inhibitor 3-deazaneplanocin A (3-DZNeP) exerts renal benefits in acute renal ischemia-reperfusion injury (IRI). However, the underlying mechanisms are not completely known. This study aimed to elucidate the pathological mechanism of EZH2 in renal IRI by combination of multi-omics analysis and expression profiling in a public clinical cohort. METHODS: In this study, C57BL/6 J mice were used to establish the AKI model, which were treated with 3-DZNeP for 24 h. Kidney samples were collected for RNA-seq analysis, which was combined with publicly available EZH2 chromatin immunoprecipitation sequencing (ChIP-seq) data of mouse embryonic stem cell for a joint analysis to identify differentially expressed genes. Several selected differentially expressed genes were verified by quantitative PCR. Finally, single-nucleus sequencing data and expression profiling in public clinical datasets were used to confirm the negative correlation of the selected genes with EZH2 expression. RESULTS: 3-DZNeP treatment significantly improved renal pathology and function in IRI mice. Through RNA-seq analysis combined with EZH2 ChIP-seq database, 162 differentially expressed genes were found, which might be involved in EZH2-mediated pathology in IRI kidneys. Four differential expressed genes (Scd1, Cidea, Ghr, and Kl) related to lipid metabolism or cell growth were selected based on Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis, which were validated by quantitative PCR. Data from single-nucleus RNA sequencing revealed the negative correlation of these four genes with Ezh2 expression in different subpopulations of proximal tubular cells in IRI mice in a different pattern. Finally, the negative correlation of these four genes with EZH2 expression was confirmed in patients with AKI in two clinical datasets. CONCLUSIONS: Our study indicates that Scd1, Cidea, Ghr, and Kl are downstream genes regulated by EZH2 in AKI. Upregulation of EZH2 in AKI inhibits the expression of these four genes in a different population of proximal tubular cells to minimize normal physiological function and promote acute or chronic cell injuries following AKI.


Assuntos
Injúria Renal Aguda , Adenosina , Adenosina/análogos & derivados , Proteína Potenciadora do Homólogo 2 de Zeste , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Camundongos , Adenosina/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Multiômica
2.
Environ Sci Technol ; 57(23): 8739-8749, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252902

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have potential to accumulate in crops and pose health risks to humans, but it is unclear how the widely present organic matters in soil, such as humic acid (HA), affect their uptake and translocation in plants. In this study, hydroponic experiments were conducted to systematically disclose the impacts of HA on the uptake, translocation, and transmembrane transport at the subcellular level of four PFASs, including perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorohexane sulfonic acid, and 6:2 chlorinated polyfluoroalkyl ether sulfonate in wheat (Triticum aestivum L.). The results of the uptake and depuration experiments indicated that HA depressed the adsorption and absorption of PFASs in wheat roots by reducing the bioavailability of PFASs, and HA did not affect the long-range transport of PFASs to be eliminated via the phloem of wheat. However, HA facilitated their transmembrane transport in wheat roots, while the contrary effect was observed in the shoots. The inhibitor experiments coupled with transcriptomics analysis uncover that the increased transmembrane transport of PFASs stimulated by HA is mainly driven by the slow-type anion channel pathways interacting with Ca2+-dependent protein kinases (Ca2+-CDPK-SLAC1). The promoted transmembrane transport of PFASs might cause adverse effects on the plant cell wall, which causes further concerns.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Substâncias Húmicas/análise , Triticum , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Solo , Alcanossulfonatos/análise , Fluorocarbonos/análise , China
3.
Genomics ; 113(3): 1057-1069, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667649

RESUMO

The Bromodomain and Extra-terminal domain (BET) proteins are promising targets in treating cancers. Although BET inhibitors have been in clinical trials, they are limited by lacking of suitable biomarkers to indicate drug responses in different cancers. Here we identify DHRS2, ETV4 and NOTUM as potential biomarkers to indicate drug resistance in liver cancer cells of a recently discovered BET inhibitor, Hjp-6-171. Furthermore, we confirm that reactivation of WNT pathway, the target of NOTUM, contributes to the drug sensitivity restoration in Hjp-6-171 resistant cells. Specially, combinations of Hjp-6-171 and a GSK3ß inhibitor CHIR-98014 show remarkable therapeutic effects in vitro and in vivo. Integrating RNA-seq and ChIP-seq data, we reveal the expression signature of ß-catenin regulated genes is contrary in sensitive cells to that in resistant cells. We propose WNT signaling molecules such as ß-catenin and ETV4 to be candidate biomarkers to indicate BET inhibitor responses in liver cancer patients.


Assuntos
Neoplasias Hepáticas , Via de Sinalização Wnt , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
4.
Acta Pharmacol Sin ; 40(1): 55-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30013032

RESUMO

Circular RNAs (circRNAs) are emerging species of mRNA splicing products with largely unknown functions. Although several computational pipelines for circRNA identification have been developed, these methods strictly rely on uniquely mapped reads overlapping back-splice junctions (BSJs) and lack approaches to model the statistical significance of the identified circRNAs. Here, we reported a systematic computational approach to identify circRNAs by simultaneously utilizing BSJ overlapping reads and discordant BSJ spanning reads to identify circRNAs. Moreover, we developed a novel procedure to estimate the P-values of the identified circRNAs. A computational cross-validation and experimental validations demonstrated that our method performed favorably compared to existing circRNA detection tools. We created a standalone tool, CircRNAFisher, to implement the method, which might be valuable to computational and experimental scientists studying circRNAs.


Assuntos
Biologia Computacional/métodos , RNA/análise , Análise de Sequência de RNA/métodos , Algoritmos , Linhagem Celular Tumoral , Fibroblastos/química , Humanos , RNA/genética , RNA/isolamento & purificação , RNA Circular
5.
Nucleic Acids Res ; 44(6): 2514-27, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26926107

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a complex multistep process in which phenotype switches are mediated by a network of transcription factors (TFs). Systematic characterization of all dynamic TFs controlling EMT state transitions, especially for the intermediate partial-EMT state, represents a highly relevant yet largely unexplored task. Here, we performed a computational analysis that integrated time-course EMT transcriptomic data with public cistromic data and identified three synergistic master TFs (ETS2, HNF4A and JUNB) that regulate the transition through the partial-EMT state. Overexpression of these regulators predicted a poor clinical outcome, and their elimination readily abolished TGF-ß-induced EMT. Importantly, these factors utilized a clique motif, physically interact and their cumulative binding generally characterized EMT-associated genes. Furthermore, analyses of H3K27ac ChIP-seq data revealed that ETS2, HNF4A and JUNB are associated with super-enhancers and the administration of BRD4 inhibitor readily abolished TGF-ß-induced EMT. These findings have implications for systematic discovery of master EMT regulators and super-enhancers as novel targets for controlling metastasis.


Assuntos
Adenocarcinoma/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Neoplasias Pulmonares/genética , Proteína Proto-Oncogênica c-ets-2/genética , Fatores de Transcrição/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Fator 4 Nuclear de Hepatócito/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteína Proto-Oncogênica c-ets-2/antagonistas & inibidores , Proteína Proto-Oncogênica c-ets-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Análise de Sobrevida , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Triazóis/farmacologia
7.
Mol Cancer ; 13: 17, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24472312

RESUMO

BACKGROUND: T674I FIP1L1-PDGFRα in a subset of chronic eosinophilic leukemia (CEL) is a gatekeeper mutation that is resistant to many tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib and dasatinib), similar to T315I Bcr-Abl. Therefore, novel TKIs effective against T674I FIP1L1-PDGFRα are needed. Ponatinib (AP24534) is a novel orally bioavailable TKI against T315I Bcr-Abl, but it is not clear whether ponatinib is effective against T674I FIP1L1-PDGFRα. The purpose of this study was to examine the effect of ponatinib on T674I FIP1L1-PDGFRα. METHODS: Molecular docking analysis in silico was performed. The effects of ponatinib on PDGFRα signaling pathways, apoptosis and cell cycling were examined in EOL-1, BaF3 cells expressing either wild type (WT) or T674I FIP1L1-PDGFRα. The in vivo antitumor activity of ponatinib was evaluated with xenografted BaF3-T674I FIP1L1-PDGFRα cells in nude mice models. RESULTS: Molecular docking analysis revealed that ponatinib could bind to the DFG (Asp-Phe-Gly)-out state of T674I PDGFRα. Ponatinib potently inhibited the phosphorylation of WT and T674I FIP1L1-PDGFRα and their downstream signaling molecules (e.g., Stat3, Stat5). Ponatinib strikingly inhibited the growth of both WT and T674I FIP1L1-PDGFRα-carrying CEL cells (IC50: 0.004-2.5 nM). It induced apoptosis in CEL cells with caspase-3-dependent cleavage of Mcl-1, and inhibited tyrosine phosphorylation of ß-catenin to decrease its stability and pro-survival functions. In vivo, ponatinib abrogated the growth of xenografted BaF3-T674I FIP1L1-PDGFRα cells in nude mice. CONCLUSIONS: Ponatinib is a pan-FIP1L1-PDGFRα inhibitor, and clinical trials are warranted to investigate its efficacy in imatinib-resistant CEL.


Assuntos
Antineoplásicos/farmacologia , Síndrome Hipereosinofílica/metabolismo , Imidazóis/farmacologia , Piridazinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Humanos , Síndrome Hipereosinofílica/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Fusão Oncogênica/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
8.
Bioorg Med Chem ; 21(7): 1724-34, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23434140

RESUMO

A series of novel indolin-2-ones inhibitors against p90 ribosomal S6 protein kinase 2 (RSK2) were designed and synthesized and their structure-activity relationship (SAR) was studied. The most potent inhibitor, compound 3s, exhibited potent inhibition against RSK2 with an IC50 value of 0.5 µM and presented a satisfactory selectivity against 23 kinases. The interactions of these inhibitors with RSK2 were investigated based on the proposed binding poses with molecular docking simulation. Four compounds and six compounds exhibited moderate anti-proliferation activities against PC 3 cells and MCF-7 cells, respectively.


Assuntos
Indóis/química , Indóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Relação Estrutura-Atividade
9.
J Enzyme Inhib Med Chem ; 28(4): 747-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22545939

RESUMO

The 90 kDa ribosomal S6 kinases (RSKs), especially RSK2, have attracted attention for the development of new anticancer agents. Through structural optimization of the hit compound 1 from our previous study, a series of barbituric acid aryl hydrazone analogues were designed and synthesized as potential RSK2 inhibitors. The most potent one, compound 9, showed a higher activity against RSK2 with an IC50 value of 1.95 µM. To analyze and elucidate their structure-activity relationship, the homology model of RSK2 N-terminal kinase domain was built and molecular docking simulations were performed, which provide helpful clues to design new inhibitors with desired activities.


Assuntos
Barbitúricos/farmacologia , Hidrazonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Barbitúricos/síntese química , Barbitúricos/química , Relação Dose-Resposta a Droga , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Relação Estrutura-Atividade
10.
Sci Total Environ ; 879: 163108, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37003175

RESUMO

Graphene oxide (GO) is a representative novel carbonaceous nanomaterial, and neonicotinoid insecticides (NEOs) are currently the insecticides with the highest market share in the world. Their widespread application deservedly leads to their release to the environment. Thus, the complex interactions of these two types of organic compounds have attracted extensive attention. In this study, the effects of GO and its derivatives, reduced GO (RGO) and oxidized GO (OGO), on the photolysis of imidacloprid (IMD) (a typical NEO) under ultraviolet (UV) irradiation were systematically investigated. The results showed that the presence of the graphene-based nanomaterials (GNs) largely depressed the photodegradation of IMD, and the inhibition degree followed the order of RGO > GO > OGO. This was because the sp2 π-conjugated structure in the GNs caused light-shielding effect and attenuated the direct photolysis of IMD, even though the GNs-generated reactive oxygen species (ROS) promoted the indirect photodegradation of IMD to a certain extent. Additionally, the rich O-functionalized GO and OGO altered the photolysis pathway of IMD and induced more toxic intermediate products. These results highlight the implication of carbonaceous nanomaterials on the behavior, fate and potential risk of NEOs in aqueous systems.

11.
J Hazard Mater ; 448: 130896, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764254

RESUMO

As alternatives of long-chain PFASs (Poly- and perfluoroalkyl substances), perfluoroalkyl phosphinic acids (PFPiAs) are increasingly observed in the environment, but their environmental behaviors have not been well understood. Here, the microbial biotransformation of C6/C6 and C8/C8 PFPiA in two soils (Soil N and Y) was investigated. After 252 d and 330 d of incubation with PFPiAs in Soil N and Y respectively, the levels of PFPiAs decreased distinctly, accompanied by the increasing perfluorohexaphosphonic acid (PFHxPA) or perfluorooctanophosphonic acid (PFOPA) formation, magnifying PFPiAs were susceptible to C-P cleavage, which was also confirmed by the density functional theory calculations. The half-lives of the PFPiAs were longer than one year, while generally shorter in Soil N than in Soil Y and that of C6/C6 was shorter than C8/C8 PFPiA (392 d and 746 d in Soil N, and 603 and 1155 d in Soil Y, respectively). Metagenomic sequencing analysis revealed that Proteobacteria as the primary host of the potential functional genes related to CP bond cleavage might be the crucial phyla contributing to the biotransformation of PFPiAs. Meanwhile, the more intensive interactions between the microbes in Soil N consistently contribute to its greater capacity for transforming PFPiAs.


Assuntos
Fluorocarbonos , Ácidos Fosfínicos , Ácidos Fosfínicos/metabolismo , Solo , Meia-Vida , Biotransformação , Fluorocarbonos/análise
12.
Int J Oral Sci ; 15(1): 9, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765028

RESUMO

Cancer cell membrane (CCM) derived nanotechnology functionalizes nanoparticles (NPs) to recognize homologous cells, exhibiting translational potential in accurate tumor therapy. However, these nanoplatforms are majorly generated from fixed cell lines and are typically evaluated in cell line-derived subcutaneous-xenografts (CDX), ignoring the tumor heterogeneity and differentiation from inter- and intra- individuals and microenvironments between heterotopic- and orthotopic-tumors, limiting the therapeutic efficiency of such nanoplatforms. Herein, various biomimetic nanoplatforms (CCM-modified gold@Carbon, i.e., Au@C-CCM) were fabricated by coating CCMs of head and neck squamous cell carcinoma (HNSCC) cell lines and patient-derived cells on the surface of Au@C NP. The generated Au@C-CCMs were evaluated on corresponding CDX, tongue orthotopic xenograft (TOX), immune-competent primary and distant tumor models, and patient-derived xenograft (PDX) models. The Au@C-CCM generates a photothermal conversion efficiency up to 44.2% for primary HNSCC therapy and induced immunotherapy to inhibit metastasis via photothermal therapy-induced immunogenic cell death. The homologous CCM endowed the nanoplatforms with optimal targeting properties for the highest therapeutic efficiency, far above those with mismatched CCMs, resulting in distinct tumor ablation and tumor growth inhibition in all four models. This work reinforces the feasibility of biomimetic NPs combining modular designed CMs and functional cores for customized treatment of HNSCC, can be further extended to other malignant tumors therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia Fototérmica , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Xenoenxertos , Biomimética , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
13.
Bioorg Med Chem Lett ; 22(14): 4540-5, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738629

RESUMO

The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 µg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html).


Assuntos
Algoritmos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Design de Software , Técnicas de Química Combinatória , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Estrutura Molecular , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 21(19): 5739-44, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21873057

RESUMO

Several potent and novel 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) inhibitors were discovered from in silico screening the commercially available Maybridge database. Among them, seven hit compounds showed good affinity, with IC(50) values lower than 100 nM and the best one 3.7 nM. To select the lead for further optimization, computational ADME/T prediction, the CYP3A4 inhibition and 11ß-HSD1 over 11ß-HSD2 selectivity test were also performed. Taking all of the above factors into consideration, two promising compounds were selected as lead structures for further development. The employed hierarchical virtual screening protocol not only demonstrates its efficiency, but also provides novel and selective compounds for developing 11ß-HSD1 inhibitors to protect against metabolic syndrome.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Síndrome Metabólica/prevenção & controle , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Simulação por Computador , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/patologia , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade
15.
BMC Bioinformatics ; 11: 47, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20100327

RESUMO

BACKGROUND: Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. RESULTS: Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function), which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. CONCLUSIONS: This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Software , Sítios de Ligação , Estrutura Secundária de Proteína
16.
J Chem Inf Model ; 50(8): 1378-86, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20681607

RESUMO

Protein kinases are attractive targets for therapeutic interventions in many diseases. Due to their importance in drug discovery, a kinase family-specific potential of mean force (PMF) scoring function, kinase-PMF, was developed to assess the binding of ATP-competitive kinase inhibitors. It is hypothesized that target-specific PMF scoring functions may achieve increased performance in scoring along with the growth of the PDB database. The kinase-PMF inherits the functions and atom types in PMF04 and uses a kinase data set of 872 complexes to derive the potentials. The performance of kinase-PMF was evaluated with an external test set containing 128 kinase crystal structures. We compared it with eight scoring functions commonly used in computer-aided drug design, either in terms of the retrieval rate of retrieving "right" conformations or a virtual screening study. The evaluation results clearly demonstrate that a target-specific scoring function is a promising way to improve prediction power in structure-based drug design compared with other general scoring functions. To provide this rescoring service for researchers, a publicly accessible Web site was established at http://202.127.30.184:8080/scoring/index.jsp .


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Algoritmos , Ligantes , Conformação Molecular , Ligação Proteica
17.
Theranostics ; 10(23): 10531-10547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929364

RESUMO

Background: Triple-negative breast cancer (TNBC) is an aggressive malignancy with high heterogeneity. However, the alternative polyadenylation (APA) profiles of TNBC remain unknown. Here, we aimed to define the characteristics of the APA events at post-transcription level among TNBCs. Methods: Using transcriptome microarray data, we analyzed APA profiles of 165 TNBC samples and 33 paired normal tissues. A pooled short hairpin RNA screen targeting 23 core cleavage and polyadenylation (C/P) genes was used to identify key C/P factors. Results: We established an unconventional APA subtyping system composed of four stable subtypes: 1) luminal androgen receptor (LAR), 2) mesenchymal-like immune-activated (MLIA), 3) basal-like (BL), 4) suppressed (S) subtypes. Patients in the S subtype had the worst disease-free survival comparing to other patients (log-rank p = 0.021). Enriched clinically actionable pathways and putative therapeutic APA events were analyzed among each APA subtype. Furthermore, CPSF1 and PABPN1 were identified as the master C/P factors in regulating APA events and TNBC proliferation. The depletion of CPSF1 or PABPN1 weakened cell proliferation, enhanced apoptosis, resulted in cell cycle redistribution and a reversion of APA events of genes associated with tumorigenesis, proliferation, metastasis and chemosensitivity in breast cancer. Conclusions: Our findings advance the understanding of tumor heterogeneity regulation in APA and yield new insights into therapeutic target identification in TNBC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Poliadenilação , Neoplasias de Mama Triplo Negativas/genética , Regiões 3' não Traduzidas/genética , Apoptose/genética , Mama/patologia , Carcinogênese/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Intervalo Livre de Doença , Feminino , Heterogeneidade Genética , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteína I de Ligação a Poli(A)/metabolismo , Estudos Prospectivos , RNA-Seq , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
18.
Theranostics ; 10(24): 11092-11109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042272

RESUMO

Rationale: Paclitaxel resistance is a major concern when treating triple-negative breast cancer (TNBC) patients. We aimed to identify candidates causing paclitaxel resistance and explore their significance in TNBC therapeutics. Methods: A genome-wide CRISPR screening, integrated with transcriptome analyses, was performed to identify candidates involved in paclitaxel-resistant TNBCs. Cell proliferation, cytotoxicity, immunofluorescent staining, and xenograft assays were conducted to verify the phenotypes of paclitaxel resistance induced by candidate genes, both in vitro and in vivo. RNA sequencing, Western blotting, and chromatin immunoprecipitation assays were used to explore the underlying mechanisms. Results: MEF2-interacting transcriptional repressor (MITR), the truncated isoform of histone deacetylase 9 (HDAC9) lacking the deacetylation domain, was enriched in paclitaxel-resistant cells. Elevated MITR expression resulted in increased interleukin-11 (IL11) expression and activation of downstream JAK/STAT3 signaling. Mechanistically, MITR counteracted MEF2A-induced transcriptional suppression of IL11, ultimately causing paclitaxel resistance. By contrast, pharmacological inhibition of JAK1/2 by ruxolitinib reversed paclitaxel resistance both in vitro and in vivo. Conclusion: Our in vitro and in vivo genetic and cellular analyses elucidated the pivotal role of MITR/MEF2A/IL11 axis in paclitaxel resistance and provided a novel therapeutic strategy for TNBC patients to overcome poor chemotherapy responses.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Histona Desacetilases/metabolismo , Paclitaxel/farmacologia , Proteínas Repressoras/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Histona Desacetilases/genética , Humanos , Interleucina-11/genética , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Estimativa de Kaplan-Meier , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Nitrilas , Paclitaxel/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas , RNA-Seq , Proteínas Repressoras/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nat Commun ; 11(1): 5679, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173047

RESUMO

The remarkable advances in next-generation sequencing technology have enabled the wide usage of sequencing as a clinical tool. To promote the advance of precision oncology for breast cancer in China, here we report a large-scale prospective clinical sequencing program using the Fudan-BC panel, and comprehensively analyze the clinical and genomic characteristics of Chinese breast cancer. The mutational landscape of 1,134 breast cancers reveals that the most significant differences between Chinese and Western patients occurred in the hormone receptor positive, human epidermal growth factor receptor 2 negative breast cancer subtype. Mutations in p53 and Hippo signaling pathways are more prevalent, and 2 mutually exclusive and 9 co-occurring patterns exist among 9 oncogenic pathways in our cohort. Further preclinical investigation partially suggests that NF2 loss-of-function mutations can be sensitive to a Hippo-targeted strategy. We establish a public database (Fudan Portal) and a precision medicine knowledge base for data exchange and interpretation. Collectively, our study presents a leading approach to Chinese precision oncology treatment and reveals potentially actionable mutations in breast cancer.


Assuntos
Povo Asiático/genética , Neoplasias da Mama , Terapia de Alvo Molecular , Mutação , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , China , Gerenciamento de Dados , Feminino , Marcadores Genéticos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neurofibromina 2/genética , Oncogenes , Medicina de Precisão , Estudos Prospectivos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
20.
Acta Pharmacol Sin ; 30(2): 251-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151741

RESUMO

AIM: The search for molecules whose bioactivities are similar to those of given compounds or to optimize the initial lead compounds from high throughput screening has attracted increasing interest in recent years. Our goal is to provide a publically searchable database of scaffolds out from a large collection of existing chemical molecules. RESULTS: Although a number of in silico methods have emerged to facilitate this process, which has become known as "scaffold hopping" or "molecular hopping", there is an urgent need for a database system to provide such valuable data in the drug design field. Here we have systematically analyzed a collection of commercially available small molecule databases and a bioactive compound database to identify unique scaffolds and we have built a publically searchable database. The analysis of approximately 4,800,000 of these compounds identified 241,824 unique scaffolds, which are stored in a relational database (http://202.127.30.184:8080/db.html). Each entry in the database is associated with a molecular occurrence and includes its distribution of molecular properties, such as molecular weight, logP, hydrogen bond acceptor number, hydrogen bond donor number, rotatable bond number and ring number. More importantly, for scaffolds derived from the bioactive compounds database, it also contains the original compounds and their target information. CONCLUSION: This Web-based database system could help researchers in the fields of medicinal and organic chemistry to design novel molecules with properties similar to the original compounds, but built on novel scaffolds.


Assuntos
Bases de Dados Factuais , Desenho de Fármacos , Internet , Química Farmacêutica/métodos , Sistemas de Gerenciamento de Base de Dados , Humanos , Armazenamento e Recuperação da Informação , Estrutura Molecular , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA