Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 214: 112097, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667736

RESUMO

Plant ZIP genes represent an important transporter family and may be involved in cadmium (Cd) accumulation and Cd resistance. In order to explore the function of SmZIP isolated from Salix matsudana, the roles of SmZIP in Cd tolerance, uptake, translocation, and distribution were determined in the present investigation. The transgenic SmZIP tobacco was found to respond to external Cd stress differently from WT tobacco by exhibiting a higher growth rate and more vigorous phenotype. The overexpression of SmZIP in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects. Compared to WT tobacco, the Cd content of the root, stem, and leaf in the transgenic tobacco increased, and the zinc, iron, copper, and manganese contents also increased. The assimilation factor, translocation factor and bioconcentration factor of Cd were improved. The scanning electron microscopy and energy dispersive X-ray analysis results of the root maturation zone exposed to Cd for 24 h showed that Cd was transferred through the root epidermis, cortex, and vascular cylinder and migrated to the aboveground parts via the vascular cylinder, resulting in the transgenic tobacco accumulating more Cd than the WT plants. Based on the transverse section of the leaf main vein and leaf blade, Cd was transported through the vascular tissues to the leaves and accumulated more greatly in the leaf epidermis, but less in the leaf mesophyll cells, following the overexpression of SmZIP to reduce the photosynthetic toxicity. The overexpression of SmZIP resulted in the redistribution of Cd at the subcellular level, a decrease in the percentage of Cd in the cell wall, and an increase of the Cd in the soluble fraction in both the roots and leaves. It also changed the percentage composition of different Cd chemical forms by elevating the proportion of Cd extracted using 2% HAc and 0.6 mol/L HCl, but lowering that of the Cd extracted using 1 mol/L NaCl in both the leaves and roots under 10 and 100 µmol/L Cd stress for 28 d. The results implied that SmZIP played important roles in advancing Cd uptake, accumulation, and translocation, as well as in enhancing Cd resistance by altering the Cd subcellular distribution and chemical forms in the transgenic tobacco. The study will be useful for future phytoremediation applications to clean up Cd-contaminated soil.


Assuntos
Cádmio/toxicidade , Nicotiana/fisiologia , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Cádmio/análise , Parede Celular/química , Genes de Plantas , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Salix , Poluentes do Solo/análise , Nicotiana/efeitos dos fármacos , Zinco/análise
2.
BMC Plant Biol ; 20(1): 296, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600254

RESUMO

BACKGROUND: Lead (Pb) is a harmful pollutant that disrupts normal functions from the cell to organ levels. Salix babylonica is characterized by high biomass productivity, high transpiration rates, and species specific Pb. Better understanding the accumulating and transporting Pb capability in shoots and roots of S. babylonica, the toxic effects of Pb and the subcellular distribution of Pb is very important. RESULTS: Pb exerted inhibitory effects on the roots and shoots growth at all Pb concentrations. According to the results utilizing inductively coupled plasma atomic emission spectrometry (ICP-AES), S. babylonica can be considered as a plant with great phytoextraction potentials as translocation factor (TF) value > 1 is observed in all treatment groups throughout the experiment. The Leadmium™ Green AM dye test results indicated that Pb ions initially entered elongation zone cells and accumulated in this area. Then, ions were gradually accumulated in the meristem zone. After 24 h of Pb exposure, Pb accumulated in the meristem zone. The scanning electron microscopy (SEM) and energy-dispersive X-ray analyses (EDXA) results confirmed the fluorescent probe observations and indicated that Pb was localized to the cell wall and cytoplasm. In transverse sections of the mature zone, Pb levels in the cell wall and cytoplasm of epidermal cells was the lowest compared to cortical and vessel cells, and an increasing trend in Pb content was detected in cortical cells from the epidermis to vascular cylinder. Similar results were shown in the Pb content in the cell wall and cytoplasm of the transverse sections of the meristem. Cell damage in the roots exposed to Pb was detected by propidium iodide (PI) staining, which was in agreement with the findings of Pb absorption in different zones of S. babylonica roots under Pb stress. CONCLUSION: S. babylonica L. is observed as a plant with great potential of Pb-accumulation and Pb-tolerance. The information obtained here of Pb accumulation and localization in S. babylonica roots can furthers our understanding of Pb-induced toxicity and its tolerance mechanisms, which will provide valuable and scientific information to phytoremediation investigations of other woody plants under Pb stress.


Assuntos
Chumbo/metabolismo , Raízes de Plantas/metabolismo , Salix/metabolismo , Poluentes do Solo/metabolismo , Chumbo/toxicidade , Raízes de Plantas/ultraestrutura , Salix/efeitos dos fármacos , Salix/crescimento & desenvolvimento , Salix/ultraestrutura , Plântula/efeitos dos fármacos , Plântula/metabolismo
3.
Sci Total Environ ; 873: 162202, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775162

RESUMO

Soils co-contaminated by organic and inorganic pollutants usually pose major ecological risks to soil ecosystems including plants. Thus, effective strategies are needed to alleviate the phytotoxicity caused by such co-contamination. In this study, microbial agents (a mixture of Bacillus subtilis, Sphingobacterium multivorum, and a commercial microbial product named OBT) and soil amendments (ß-cyclodextrin, rice husk, biochar, calcium magnesium phosphate fertilizer, and organic fertilizer) were evaluated to determine their applicability in alleviating toxicity to crops (maize and soybean) posed by polycyclic aromatic hydrocarbon (PAHs) and potentially toxic metals co-contaminated soils. The results showed that peroxidase, catalase, and superoxide dismutase activity levels in maize or soybean grown in severely or mildly contaminated soils were significantly enhanced by the integrative effects of amendments and microbial agents, compared with those in single plant treatments. The removal rates of Zn, Pb, and Cd in severely contaminated soils were 49 %, 47 %, and 51 % and 46 %, 45 %, and 48 %, for soybean and maize, respectively. The total contents of Cd, Pb, Zn, and PAHs in soil decreased by day 90. Soil organic matter content, levels of nutrient elements, and enzyme activity (catalase, urease, and dehydrogenase) increased after the amendments and application of microbial agents. Moreover, the amendments and microbial agents also increased the diversity and distribution of bacterial species in the soil. These results suggest that the amendments and microbial agents were beneficial for pollutant purification, improving the soil environment and enhancing both plant resistance to pollutants and immune systems of plants.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Solo , Catalase , Ecossistema , Fertilizantes , Chumbo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal/farmacologia
4.
Environ Sci Pollut Res Int ; 30(28): 72884-72899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37184801

RESUMO

The competitive adsorption ability and mechanisms of lead (Pb2+) and cadmium (Cd2+) by nanoplastics (NPs) with positive charges (PS-NH2) and negative charges (PS-SO3H) were investigated by using batch adsorption experiments coupled with the two-dimensional correlation spectroscopy (2D-COS) method. The adsorption isotherm results showed that PS-SO3H exhibited a higher adsorption capacity for Pb2+ or Cd2+ compared to PS-NH2. The adsorption affinity of NPs for Pb2+ was higher than that of Cd2+. The competitive adsorption results showed that Pb2+ had a more pronounced negative effect on the adsorption of Cd2+. The adsorption capacities of NPs were affected by the surface charge and solution pH. Electrostatic force was the main factor influencing PS-SO3H to capture Pb2+ and Cd2+, while chelation was the main mechanism between PS-NH2 and metals. The functional groups of NPs played significant roles in the sorption of Pb2+ or Cd2+ according to the FTIR spectra and 2D-COS analysis. This study provided new insights into the impact of NPs on the transport of other pollutants.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Microplásticos , Chumbo , Adsorção , Análise Espectral , Poluentes Químicos da Água/química , Cinética
5.
J Hazard Mater ; 460: 132453, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37677969

RESUMO

Tetracycline (TC) is a commonly used antibiotic that affects various physiological processes in plants. However, its negative effects on plants remain poorly understood at the molecular level. To ascertain the TC toxicity in the roots, transcriptomic, cytological, and physiological analyses were performed to explore the molecular mechanisms of TC influencing the growth of hulless barley root. At a low concentration (1 mg/L), TC promoted root growth by upregulating the genes related to the flavonoid pathway. At high concentrations (10, 100, and 200 mg/L), TC downregulated genes related to homologous recombination in the root meristem zone and inhibited the mitosis index by 16.4%. Disruption of the DNA repair process can lead to chromosomal aberrations, resulting in a 6.8% C-mitosis rate in the most severe cases. Finally, root growth was inhibited by TC, as evidenced by a reduction in root viability, an increase in reactive oxygen species content, and an inhibition of root length. Cross-comparison of physiological and cytological characterizations and transcriptomic information revealed changes in genetic processes under TC stress. Overall, we present an early genetic strategy to study the significant influence of TC stress on roots.


Assuntos
Hordeum , Hordeum/genética , Meristema/genética , Tetraciclina/toxicidade , Antibacterianos/toxicidade , Flavonoides
6.
J Gastrointest Oncol ; 13(6): 3038-3055, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636048

RESUMO

Background: Mismatch repair-proficient (pMMR) colorectal cancers (CRCs) are thought to be primarily resistant to immune checkpoint inhibitor (ICI) monotherapy. However, recent clinical trials have reported that early-to-mid stage (non-metastatic) CRC responds well to ICI monotherapy. We hypothesized that the efficacy of immunotherapy is linked to a series of gene expression profiles that can characterize the pMMR CRC disease stage. Methods: Using The Cancer Genome Atlas (TCGA) CRC data sets, we first investigated transcriptomic features that continuously changed (were continuously upregulated or downregulated) with pMMR CRC disease-stage progression. We defined these gene sets as stage-associated genes. The deconvolution algorithm then enriched these genes with the dynamic changes in the cell type populations of the CRC tumor microenvironment (TME). Finally, the stage-associated genes were cross-referenced to the current transcriptome profile data on ICI treatment of pMMR CRC, which revealed the gene set specifying an effective pMMR tumor response. Results: In total, 774 genes were found to increase in expression and 845 genes to decrease in expression as the stage increased. Using deconvolution methods, we discovered 2 major disease stage-associated alterations in the cellular composition of pMMR CRCs, including changes in cell types involved in host immune responses and tumor cell metastasis. The central memory CD8+ T cell population decreased as the pMMR CRC disease stage increased, but the endothelial cell populations associated with proliferation and metastasis increased. Using a different cell type annotation set (LM22), we discovered that as the disease progressed, M1 macrophages and CD8+ T cells decreased in the TME. In mismatch repair-deficient patients with CRC, however, such a decrease was not observed. Finally, we identified 27 signature genes that can be used to assess ICI efficacy in treatment-naïve patients with pMMR CRC. Conclusions: The current study sought to identify the underlying molecular mechanisms, pathways, and cell landscapes that explain why early-to-mid stage pMMR CRC responds well to ICI treatment. This analysis might be valuable for the selection of patients who might benefit from immunotherapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA