Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768475

RESUMO

B-box (BBX) is a type of zinc finger transcription factor that contains a B-box domain. BBX transcription factors play important roles in plant photomorphogenesis, signal transduction, as well as abiotic and biological stress responses. However, the BBX gene family of Salvia miltiorrhiza has not been systematically investigated to date. For this study, based on the genomic data of Salvia miltiorrhiza, 27 SmBBXs genes were identified and clustered into five evolutionary branches according to phylogenetic analysis. The promoter analysis suggested that SmBBXs may be involved in the regulation of the light responses, hormones, stress signals, and tissue-specific development. Based on the transcriptome data, the expression patterns of SmBBXs under different abiotic stresses and plant hormones were analyzed. The results revealed that the expressions of the SmBBXs genes varied under different conditions and may play essential roles in growth and development. The transient expression analysis implied that SmBBX1, SmBBX4, SmBBX9, SmBBX20, and SmBBX27 were in the nucleus. A transcriptional activation assay showed SmBBX1, SmBBX4, SmBBX20, and SmBBX24 had transactivation activities, while SmBBX27 had none. These results provided a basis for further research on the role of SmBBXs in the development of Salvia miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012649

RESUMO

Jasmonic acid (JA) is a vital plant hormone that performs a variety of critical functions for plants. Salvia miltiorrhiza Bunge (S. miltiorrhiza), also known as Danshen, is a renowned traditional Chinese medicinal herb. However, no thorough and systematic analysis of JA biosynthesis genes in S. miltiorrhiza exists. Through genome-wide prediction and molecular cloning, 23 candidate genes related to JA biosynthesis were identified in S. miltiorrhiza. These genes belong to four families that encode lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), and 12-OPDA reductase3 (OPR3). It was discovered that the candidate genes for JA synthesis of S. miltiorrhiza were distinct and conserved, in contrast to related genes in other plants, by evaluating their genetic structures, protein characteristics, and phylogenetic trees. These genes displayed tissue-specific expression patterns concerning to methyl jasmonate (MeJA) and wound tests. Overall, the results of this study provide valuable information for elucidating the JA biosynthesis pathway in S. miltiorrhiza by comprehensive and methodical examination.


Assuntos
Ciclopentanos , Oxilipinas , Salvia miltiorrhiza , Clonagem Molecular , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo
3.
Metabolites ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295870

RESUMO

Salvia miltiorrhiza Bunge is one of the most famous traditional Chinese medicinal plants. The two most important classes of pharmaceutically relevant compounds in S. miltiorrhiza are phenolic acids and tanshinones. The MYB family of transcription factors may efficiently regulate the secondary metabolism in plants. In this study, a subgroup 4 R2R3MYB transcription factor gene, SmMYB4, was isolated from S. miltiorrhiza and functionally characterized using overexpression and a RNAi-mediated silencing. We achieved a total of six overexpressions and eight RNAi transgenic lines from the Agrobacterium leaf disc method. The content of the total phenolics, rosmarinic acid, and salvianolic acid B markedly decreased in the SmMYB4-overexpressing lines but increased in the SmMYB4-RNAi lines. The content of the total tanshinones, cryptotanshinone, and tanshinone IIA decreased in the SmMYB4-overexpressing transgenic lines but increased in the SmMYB4-RNAi lines. A gene expression analysis demonstrated that SmMYB4 negatively regulated the transcription of the critical enzyme genes involved in the phenolic acid and tanshinone biosynthesis. The genetic control of this transcriptional repressor may be used to improve the content of these bioactive compounds in the cultivated S. miltiorrhiza.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA