Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(5): 7051-7061, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30387134

RESUMO

Type I interferon (IFN) signaling in neoplastic cells has a chemo-sensitizing effect in cancer therapy. Toll-like receptor 3 (TLR3) activation promotes IFN-ß production, which induces apoptosis and impairs proliferation in some cancer cells. Herein, we tested whether the TLR3 agonist polyinosinic: polycytidylic acid (poly I:C) can improve chemotherapeutic efficacy in paclitaxel (PTX) resistant cell lines. Human colon cancer cell lines HCT116, SW620, HCT-8 (sensitive to PTX), and HCT-8/PTX (resistant to PTX) were treated with poly I:C and the cell viability was measured. Results showed that poly I:C specifically impaired the cell viability of HCT-8/PTX by simultaneously promoting cell apoptosis and inhibiting cell proliferation. In addition, when TLR3 was overexpressed in HCT-8/PTX cells, we found that TLR3 contributed to the production of IFN-ß that reduced cell viability, and poly I:C preferentially activated the TLR3-UNC93B1 signaling pathway to mediate this effect. Moreover, cotreatment of poly I:C and PTX acted synergistically to induce cell apoptosis of HCT-8/PTX via upregulating the expression of TLR3 and its molecular chaperone UNC93B1, assisting in the secretion of IFN-ß. Notably, a combination of poly I:C and PTX synergistically inhibited the PTX-resistant tumor growth in vivo without side effects. In conclusion, our studies demonstrate that poly I:C reinforces the potency of cytotoxic chemotherapeutics in PTX-resistant cell line through the TLR3-UNC93B1-IFN-ß signaling pathway, which supplies a novel mechanism of poly I:C for the chemotherapy sensitizing effect in a PTX-resistant tumor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Interferon beta/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Paclitaxel/farmacologia , Poli I-C/farmacologia , Receptor 3 Toll-Like/agonistas , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Interferon beta/genética , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Physiol Biochem ; 43(2): 589-601, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934730

RESUMO

BACKGROUND/AIM: Women with advanced ovarian carcinoma are less likely to receive platinum-based chemotherapy and surgery due to a greater risk of cytotoxicity and poorer outcomes. We attempted to improve a promising therapy against ovarian cancer by using a combination of dihydroartemisinin (DHA) and curcumin (Cur). METHODS: Human ovarian cancer SKOV3 cells were treated with DHA, Cur alone, or a combination of both. The viability of SKOV3 cells was measured by Cell Counting Kit-8 (CCK-8) and a colony formation assay. The cell cycle and apoptosis of SKOV3 cells were monitored by flow cytometry. The mRNA and protein expression levels of target genes were respectively examined by qRT-PCR and western blot. The biological effects of miR-124 on midkine (MK) were verified by a luciferase activity analysis. RESULTS: Combined treatment of DHA and Cur synergistically decreased cell viability, arrested cell cycle, and promoted apoptosis in SKOV3 cells. Moreover, it significantly attenuated the expression of oncogene MK and synergistically upregulated the expression of miR-124. Furthermore, miR-124 was verified to bind directly to the 3'-untranslated region of MK mRNA, resulting in mRNA degradation and reduced MK protein levels. The combination of DHA with Cur significantly inhibited tumor growth in xenograft nude mice without obvious toxicity. CONCLUSION: Co-treatment with DHA and Cur exhibited a synergistic anti-tumor effect on SKOV3 cells both in vitro and in vivo.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Curcumina/farmacologia , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Ovário/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Midkina , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia
3.
Nanoscale Res Lett ; 14(1): 379, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844996

RESUMO

Sepsis-induced immunosuppression is recognized as one of the main features responsible for therapeutic failures. Myeloid-derived suppressor cells (MDSCs), which are mainly characterized by their suppressive properties, have been reported to be expanded in sepsis. Ferumoxytol (FMT), an FDA-approved iron supplement, has been shown to possess immune-modulatory properties in tumors. However, it is unclear whether FMT alters the functions of MDSCs to reduce late-sepsis immunosuppression. Here, we showed an immunomodulatory effect of FMT on MDSCs to ameliorate lipopolysaccharide (LPS)-induced immunosuppression in the late stage of sepsis. Separation of cells with internalized FMT and detection of the intracellular iron content showed that MDSCs could uptake FMT. Low doses of FMT had no effects on the cell viability of MDSCs, but FMT inhibited the expansion of MDSCs in vitro. Moreover, FMT significantly downregulated the expression levels of Arg-1, S100A8, S100A9, and p47phox as well as ROS production in MDSCs. FMT decreased the percentage of granulocytic MDSCs (G-MDSCs) and promoted the differentiation of MDSCs into macrophages. Furthermore, FMT reduced white blood cell recruitment and alveolar wall thickening in the lungs and areas of necrosis in the liver as well as some biochemical markers of liver dysfunction. FMT decreased the percentage of G-MDSCs and monocytic MDSCs (M-MDSCs) in the spleens of LPS-induced septic mice. Of note, FMT reduced the T cell immunosuppressive functions of both G-MDSCs and M-MDSCs. Expectedly, FMT also significantly reduced Arg-1 and p47phox gene expression in splenic CD11b+Gr-1+ cells isolated from LPS-challenged mice. These data indicate that FMT decreased the immunosuppressive functions of MDSCs by decreasing Arg-1 and ROS production, suggesting that FMT may reduce long-term immunosuppression in the late stage of sepsis.

4.
Int J Nanomedicine ; 14: 6779-6797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692534

RESUMO

BACKGROUND: Sepsis is a life-threatening condition caused by dysregulated host responses to infection. Macrophages, which recognize microbial infections through identification of bacterial markers such as lipopolysaccharide (LPS), are crucial to the pathogenesis of sepsis-associated liver injury. However, the understanding of the SPIONs-mediated modulation of macrophage responses in LPS-induced sepsis and liver injury is limited. MATERIALS AND METHODS: Superparamagnetic iron oxide nanoparticles (SPIONs) of γ-Fe2O3 nanoparticles were prepared, and their morphology and magnetic properties were characterized. RESULTS: Using a murine model of LPS-induced sepsis and liver injury, we found that SPIONs alleviated LPS-induced sepsis, preventing infiltration of inflammatory cells into the liver. SPIONs also increased the level of interleukin-10 (IL-10) in liver macrophages, while SPIONs's effect on LPS-induced sepsis was abrogated in IL-10-/- mice, indicating that the protective effect of SPIONs is dependent on IL-10+ macrophages. Moreover, SPIONs activated macrophage autophagy to increase IL-10 production, which was markedly attenuated by autophagy inhibition. Furthermore, SPIONs upregulated the expression of Caveolin-1 (Cav1) in macrophages, which plays a role in cellular uptake of metallic nanoparticles. Interestingly, activation of Cav1 and Notch1/HES1 signaling was involved in SPIONs-induced autophagy in both RAW 264.7 cells and bone marrow-derived macrophages (BMDMs). Our data reveal a novel mechanism for SPIONs -induced autophagy in macrophages, which occurs through activation of the Cav1-Notch1/HES1 signaling pathway, which promotes the production of IL-10 in macrophages, leading to inhibition of inflammation in LPS-induced sepsis and liver injury. CONCLUSION: Our results suggest that SPIONs may represent a potential therapeutic agent for the treatment of sepsis and sepsis-induced liver injury.


Assuntos
Autofagia/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/uso terapêutico , Sepse/tratamento farmacológico , Animais , Autofagia/fisiologia , Caveolina 1/genética , Caveolina 1/metabolismo , Compostos Férricos/química , Compostos Férricos/farmacologia , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Nanopartículas de Magnetita/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptor Notch1/metabolismo , Sepse/metabolismo , Sepse/patologia , Fatores de Transcrição HES-1/metabolismo
5.
Front Immunol ; 9: 2272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337925

RESUMO

Sepsis, defined as life-threatening organ dysfunction, is one of the most common causes of mortality in intensive care units with limited therapeutic options. However, the mechanism underlying the regulation of epigenetics on sepsis remains largely undefined. Here we showed that JMJD3, the histone lysine demethylase, played a critical role in the epigenetic regulation of innate immunity during early sepsis. Pharmacological inhibition of JMJD3 by GSKJ4 protected mice against early septic death and reduced pro-inflammatory cytokine interleukin-1ß (IL-1ß) production as well as IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) expression. Interestingly, GSKJ4 up-regulated the transcription of anti-inflammatory microRNA-146a (miR-146a) in peritoneal macrophages from septic mice. Mechanistically, JMJD3 negatively regulated the transcription of miR-146a via its demethylation of H3K27me3 on the promoter of miR-146a. Moreover, the transcription of miR-146a was positively regulated by nuclear factor-κB (NF-κB) p65. Inhibition of NF-κB p65 promoted JMJD3 binding to miR-146a promoter and decreased the tri-methylation level of H3K27, while the inhibition of JMJD3 did not affect the recruitment of NF-κB p65 to miR-146a promoter. These results highlight an epigenetic mechanism by which JMJD3 was inhibited by NF-κB p65 from binding to miR-146a promoter to promote the anti-inflammatory response. Taken together, our findings uncover a key role for JMJD3 in modulating the miR-146a transcription and shed light on the JMJD3 inhibitors could be potential therapeutic agents for early sepsis therapy.


Assuntos
Benzazepinas/farmacologia , Mediadores da Inflamação/imunologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , MicroRNAs/imunologia , Pirimidinas/farmacologia , Sepse/prevenção & controle , Regulação para Cima/efeitos dos fármacos , Animais , Feminino , Histona Desmetilases com o Domínio Jumonji/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos ICR , Regiões Promotoras Genéticas/imunologia , Células RAW 264.7 , Sepse/imunologia , Sepse/patologia , Fator de Transcrição RelA/imunologia , Transcrição Gênica/imunologia , Regulação para Cima/imunologia
6.
Theranostics ; 8(22): 6307-6321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613299

RESUMO

Macrophages orchestrate inflammation and control the promotion or inhibition of tumors and metastasis. Ferumoxytol (FMT), a clinically approved iron oxide nanoparticle, possesses anti-tumor therapeutic potential by inducing pro-inflammatory macrophage polarization. Toll-like receptor 3 (TLR3) activation also potently enhances the anti-tumor response of immune cells. Herein, the anti-tumor potential of macrophages harnessed by FMT combined with the TLR3 agonist, poly (I:C) (PIC), and FP-NPs (nanoparticles composed of amino-modified FMT (FMT-NH2) surface functionalized with PIC) was explored. Methods: Proliferation of B16F10 cells co-cultured with macrophages was measured using immunofluorescence or flow cytometry (FCM). Phagocytosis was analyzed using FCM and fluorescence imaging. FP-NPs were prepared through electrostatic interactions and their properties were characterized using dynamic light scattering, transmission electron microscopy, and gel retardation assay. Anti-tumor and anti-metastasis effects were evaluated in B16F10 tumor-bearing mice, and tumor-infiltrating immunocytes were detected by immunofluorescence staining and FCM. Results: FMT, PIC, or the combination of both hardly impaired B16F10 cell viability. However, FMT combined with PIC synergistically inhibited their proliferation by shifting macrophages to a tumoricidal phenotype with upregulated TNF-α and iNOS, increased NO secretion and augmented phagocytosis induced by NOX2-derived ROS in vitro. Combined treatment with FMT/PIC and FMT-NH2/PIC respectively resulted in primary melanoma regression and alleviated pulmonary metastasis with elevated pro-inflammatory macrophage infiltration and upregulation of pro-inflammatory genes in vivo. In comparison, FP-NPs with properties of internalization by macrophages and accumulation in the lung produced a more pronounced anti-metastatic effect accompanied with decreased myeloid-derived suppressor cells, and tumor-associated macrophages shifted to M1 phenotype. In vitro mechanistic studies revealed that FP-NPs nanoparticles barely affected B16F10 cell viability, but specifically retarded their growth by steering macrophages to M1 phenotype through NF-κB signaling. Conclusion: FMT synergized with the TLR3 agonist PIC either in combination or as a nano-composition to induce macrophage activation for primary and metastatic melanoma regression, and the nano-composition of FP-NPs exhibited a more superior anti-metastatic efficacy.


Assuntos
Óxido Ferroso-Férrico/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Melanoma/tratamento farmacológico , Poli I-C/administração & dosagem , Receptor 3 Toll-Like/agonistas , Animais , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Melanoma/genética , Melanoma/imunologia , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Fagocitose/efeitos dos fármacos , Receptor 3 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA