Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 70, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922757

RESUMO

BACKGROUND: The nutrient availability of roughages could affect the dietary utilization efficiency of ruminants even in isocaloric and isonitrogenous diets. Here, we analyzed the bacterial composition and their metabolic pathways in the gastrointestinal tracts (GITs) of Hu sheep fed with wheat straw (WS) instead of alfalfa (AL) in isocaloric and isonitrogenous diets, trying to explore the reasons from the perspective of GITs bacterial network structure changes. RESULTS: We employed 16S rRNA gene sequencing in combination with the Kruskal-Wallis test, Spearman correlation analysis, and other statistical methods to describe the microbiota composition in the GITs of Hu sheep. The results showed after the roughage was replaced from AL to WS, the most positive response occurred in the rumen microbiota, resulting in a more obvious microbiological and functional redundancy phenomenon. Whereas extended biogeographic studies of the GITs bacterial community found opposite results for the hindgut microbiota and metabolism networks compared to the forestomach. The abundance of fiber-degrading bacteria such as Prevotella, Oscillospiraceae NK4A214 group, and Treponema was significantly increased in GITs, but low-efficiency crude fiber degradation inhibited energy use efficiency, the pentose phosphate pathway, gluconeogenesis, and volatile acid synthesis. In addition, dietary shifting from AL to WS decreased the abundance of beneficial bacteria such as the Lachnospiraceae NK3A20 group and Alistipes, thereby enhancing the underlying inflammatory response. CONCLUSIONS: These findings suggest that feeding untreated WS affected the structure and function of the bacterial network in the GITs due to limited total digestible nutrients, and in particular increases the complexity of the rumen bacterial network, and limit the abundance of bacteria involved in the crude fiber degradation in the hindgut.


Assuntos
Ração Animal , Fibras na Dieta , Ovinos , Animais , Fibras na Dieta/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Digestão , Dieta/veterinária , Ruminantes , Trato Gastrointestinal/metabolismo , Nutrientes , Rúmen/microbiologia , Triticum , Bactérias/genética , Bactérias/metabolismo , Fermentação
2.
Front Microbiol ; 13: 888964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928163

RESUMO

This study aims to obtain anaerobic fungi from the rumen and fecal samples and investigates their potential for lignocellulosic bioconversion. Multiple anaerobic strains were isolated from rumen contents (CR1-CR21) and fecal samples (CF1-CF10) of Bactrian camel using the Hungate roll tube technique. After screening for fiber degradability, strains from rumen contents (Oontomyces sp. CR2) and feces (Piromyces sp. CF9) were compared with Pecoramyces sp. F1 (earlier isolated from goat rumen, having high CAZymes of GHs) for various fermentation and digestion parameters. The cultures were fermented with different substrates (reed, alfalfa stalk, Broussonetia papyrifera leaves, and Melilotus officinalis) at 39°C for 96 h. The Oontomyces sp. CR2 had the highest total gas and hydrogen production from most substrates in the in vitro rumen fermentation system and also had the highest digestion of dry matter, neutral detergent fiber, acid detergent fiber, and cellulose present in most substrates used. The isolated strains provided higher amounts of metabolites such as lactate, formate, acetate, and ethanol in the in vitro rumen fermentation system for use in various industrial applications. The results illustrated that anaerobic fungi isolated from Bactrian camel rumen contents (Oontomyces sp. CR2) have the highest lignocellulosic bioconversion potential, suggesting that the Bactrian camel rumen could be a good source for the isolation of anaerobic fungi for industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA