Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(3): e99-e115, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235556

RESUMO

BACKGROUND: IgE has been known for mediating endothelial cell dysfunction and mast cell (MC) activation to fuel asthma-aggravated high-fat diet-induced atherosclerosis. However, it remains unclear for the mechanism of asthma-mediated atherosclerosis, especially the potential involvement of IgE in the exacerbation of asthma-mediated atherosclerosis with a standard laboratory diet, and the cross talk between endothelial cells and MCs. METHODS: Asthma-mediated atherosclerosis mice models under a standard laboratory diet and FcεR1 knock-out mice were used to determine the role of IgE-FcεR1 signaling in asthma-mediated atherosclerosis, which was assessed by Oil Red O staining and immunohistochemistry. Various in vitro assays including nanoparticle tracking analysis and transmission electron microscopy were used to evaluate exosome characteristics. Immunofluorescence and fluorescent in situ hybridization approaches were used to evaluate the effect and mechanism of MC-secreted exosomes encapsulated circular RNA CDR1as (cerebellar degeneration-related 1 antisense) on endothelial cells in vivo and in vitro. Finally, cohort studies examined the plasma CDR1as levels in patients with atherosclerosis with or without allergies. RESULTS: Asthma mice with a standard laboratory diet showed increased atherosclerotic lesions and inflammatory infiltration depending on IgE-FcεR1 signal. FcεR1 knockout mice and blockage of IgE-FcεR1 signaling with IgE monoclonal antibody, omalizumab, all significantly alleviated asthma-mediated atherosclerosis and vascular inflammatory remodeling. Anti-inflammation with dexamethasone and stabilization of MC with cromolyn partially alleviated atherosclerotic lesions and mitigated the inflammatory infiltration in arteries. Mechanistically, IgE stimulation upregulates MC CDR1as expression in exosomes and upregulates the endothelial cell adhesive factors VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) via the CDR1as-FUS (fused in sarcoma)-phos-p65 axis. Knockdown of CDR1as in vivo significantly decreased the endothelial adhesion function and mitigated asthma-mediated atherosclerosis. Furthermore, a cohort study indicated higher plasma CDR1as levels in patients with atherosclerosis with allergies than in patients with atherosclerosis and healthy controls. CONCLUSIONS: Exosomes from IgE-stimulated MCs aggravated atherosclerosis through circular RNA CDR1as-mediated endothelial dysfunction, providing a novel insight into asthma-mediated atherosclerosis and potential diagnostic and therapeutic targets.


Assuntos
Asma , Aterosclerose , Exossomos , Animais , Humanos , Camundongos , Asma/genética , Asma/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Estudos de Coortes , Células Endoteliais/metabolismo , Exossomos/metabolismo , Exossomos/patologia , Imunoglobulina E/genética , Hibridização in Situ Fluorescente , Mastócitos/metabolismo , Camundongos Knockout , RNA Circular/metabolismo
2.
Front Pharmacol ; 15: 1338432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414737

RESUMO

Background: Rheumatoid arthritis (RA) is an erosive-destructive inflammation of the joints, and the chronic, long-term stiffness and deformation induced by RA are some of the symptoms of arthritis that are difficult to treat. Dexamethasone (DEX) and melittin (MLT) are two interesting anti-inflammatory substances, both of which possess anti-inflammatory effects exerted through the suppression of the immune system. The purpose of this study was to explore the role of MLT in the treatment of RA by DEX as well as to clarify the influence of MLT on the efficacy and side effects of DEX. Method: The rats were injected with Complete Freund's Adjuvant (CFA) to induce arthritis, followed by treatment with different doses of DEX and/or MLT. The relevant indexes of paw inflammation were determined, and the appetite, growth status, arthritis status, cytokine levels, and organ coefficient of the rats were evaluated. In addition, the paraffin sections of the joint tissues were prepared to analyze the pathological changes. Result: DEX exhibited side effects, notably hindering feed intake and growth, and inducing immune organ lesions in the rats. MLT significantly reduced the side effects of DEX and promoted its efficacy. DEX in combination with MLT demonstrated a synergistic efficacy in RA treatment, showing advantages in detumescence reduction, pro-inflammatory cytokine inhibition, and joint internal pathological improvement. Conclusion: Thus, MLT promoted the efficacy of DEX in adjuvant RA treatment in rats, offering an approach to reduce the use dosage and side effects of DEX.

3.
Int J Biol Macromol ; 270(Pt 1): 132293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735618

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease lacking a definitive cure. Although conventional treatments such as dexamethasone and methotrexate are prevalent, their usage is constrained by potential adverse effects. Melittin (MLT) has emerged as a promising natural anti-rheumatic drug; however, studies focusing on the role of MLT in modulating the expression and metabolism of RA-related genes are scarce. METHOD: Arthritis was induced in rats using Complete Freund's Adjuvant (CFA), followed by MLT injections for treatment. Post-treatment, the inflammatory status of each group was assessed, and the mechanistic underpinnings of MLT's ameliorative effects on RA were elucidated through transcriptomic and metabolomic analyses. Additionally, this study conducted qRT-PCR validation of key therapeutic genes and characterized the molecular docking interactions of MLT with key receptor proteins (TNF-α and IL-1ß) using the AutoDock Vina software. RESULT: MLT significantly diminished redness and swelling in affected joints, ameliorated inflammatory cell infiltration, and mitigated joint damage. Integration of transcriptomic and metabolomic data revealed that MLT predominantly regulated the transcription levels of pathways and genes related to cytokines and immune responses, and the metabolic biomarkers of Sphingomyelin, fatty acid, and flavonoid. qRT-PCR confirmed MLT's downregulation of inflammation-related genes such as Il6, Jak2, Stat3, and Ptx3. Molecular docking simulations demonstrated the stable binding of MLT to TNF-α and IL-1ß. CONCLUSION: MLT demonstrated significant efficacy in alleviating RA. This study provides a comprehensive summary of MLT's impact on gene expression and metabolic processes associated with RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Meliteno , Metaboloma , Simulação de Acoplamento Molecular , Transcriptoma , Animais , Ratos , Transcriptoma/efeitos dos fármacos , Meliteno/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/induzido quimicamente , Metaboloma/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/genética , Adjuvante de Freund , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA