Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2444-2450, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363218

RESUMO

Quantum Griffiths phase (QGP) is a novel quantum phenomenon of quantum phase transition in two-dimensional (2D) superconductors, and the emergence of inhomogeneous superconducting rare regions immersed in a metallic matrix is theoretically related to the quantum Griffiths singularity (QGS). However, the theoretical proposal of superconducting rare regions still lacks intuitive experimental verification. Here, we construct an artificial ordered superconducting-islands-array on monolayer graphene with the aid of an anodic aluminum oxide (AAO) membrane. The QGS under both in-plane and out-of-plane magnetic fields is evidenced by the divergent dynamical critical exponent and is in compliance with the direct activated scaling behavior. The phase diagram clearly shows that the QGP is indeed bred in the rare superconducting regions within isolated superconducting islands with a vanished quantum coherence. Our results reveal the universal features of QGP in artificial heterostructured systems and provide a visualized platform for the theoretical proposal of QGS.

2.
Small ; 18(19): e2200913, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411673

RESUMO

Direct atomic-scale observation of the local phase transition in transition metal dichalcogenides (TMDCs) is critically required to carry out in-depth studies of their atomic structures and electronic features. However, the structural aspects including crystal symmetries tend to be unclear and unintuitive in real-time monitoring of the phase transition process. Herein, by using in situ transmission electron microscopy, information about the phase transition mechanism of MoTe2 from hexagonal structure (2H phase) to monoclinic structure (1T' phase) driven by sublimation of Te atoms after a spike annealing is obtained directly. Furthermore, with the control of Te atom sublimation by modulating the hexagonal boron nitride (h-BN) coverage in the desired area, the lateral 1T'-enriched MoTe2 /2H MoTe2 homojunction can be one-step constructed via an annealing treatment. Owing to the gradient bandgap provided by 1T'-enriched MoTe2 and 2H MoTe2 , the photodetector composed of the 1T'-enriched MoTe2 /2H MoTe2 homojunction shows fast photoresponse and ten times larger photocurrents than that consisting of a pure 2H MoTe2 channel. The study reveals a route to improve the performance of optoelectronic and electronic devices based on TMDCs with both semiconducting and semimetallic phases.

3.
Nanotechnology ; 33(34)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576894

RESUMO

The metal/germanium (Ge) photodetectors have attracted much attention for their potential applications in on-chip optoelectronics. One critical issue is the relatively large dark current due to the limited Schottky potential barrier height of the metal/germanium junction, which is mainly caused by the small bandgap of Ge and the Fermi energy level pinning effect between the metal and Ge. The main technique to solve this problem is to insert a thin interlayer between the metal and Ge. However, so far, the dark current of the photodetectors is still large when using a bulk-material insertion layer, while when using a two-dimensional insertion layer, the area of the insertion layer is too small to support a mass production. Here, we report a gold/graphene/germanium photodetector with a wafer-scale graphene insertion layer using a 4 inch graphene-on-germanium wafer. The insertion layer significantly increases the potential barrier height, leading to a dark current as low as 1.6 mA cm-2, and a responsivity of 1.82 A W-1which are the best results for metal/Ge photodetectors reported so far. Our work contributes to the mass production of high-performance metal/Ge photodetectors.

4.
Nano Lett ; 20(5): 3872-3879, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32293186

RESUMO

GeSn offers a reduced bandgap than Ge and has been utilized in Si-based infrared photodetectors with an extended cutoff wavelength. However, the traditional GeSn/Ge heterostructure usually consists of defects like misfit dislocations due to the lattice mismatch issue. The defects with the large feature size of a photodetector fabricated on bulk GeSn/Ge heterostructures induce a considerable dark current. Here, we demonstrate a flexible GeSn/Ge dual-nanowire (NW) structure, in which the strain relaxation is achieved by the elastic deformation without introducing defects, and the feature dimension is naturally at the nanoscale. A photodetector with a low dark current can be built on a GeSn/Ge dual-NW, which exhibits an extended detection wavelength beyond 2 µm and enhanced responsivity compared to the Ge NW. Moreover, the dark current can be further suppressed by the depletion effect from the ferroelectric polymer side gate. Our work suggests the flexible GeSn/Ge dual-NW may open an avenue for Si-compatible optoelectronic circuits operating in the short-wavelength infrared range.

5.
Small ; 16(14): e1907170, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105406

RESUMO

Inspired by the promising applications in thermopower generation from waste heat and active on-chip cooling, the thermoelectric and electrothermal properties of graphene have been extensively pursued by seeking ingeniously designed structures with thermoelectric conversion capability. The graphene wrinkle is a ubiquitous structure formed inevitably during the synthesis of large-scale graphene films but the corresponding properties for thermoelectric and electrothermal applications are rarely investigated. Here, the electrothermal Peltier effect from the graphene wrinkle fabricated on a germanium substrate is reported. Peltier cooling and heating across the wrinkle are visualized unambiguously with polarities consistent with p-type doping and in accordance with the wrinkle spatial distribution. By direct patterning of the nano-bubble structure, the current density across the wrinkle can be boosted by current crowding to enhance the Peltier effect. The observed Peltier effect can be attributed to the nonequilibrium charge transport by interlayer tunneling across the van der Waals barrier of the graphene wrinkle. The graphene wrinkle in combination with nano-bubble engineering constitutes an innovative and agile platform to design graphene and other more general two-dimensional (2D) thermoelectrics and opens the possibility for realizing active on-chip cooling for 2D nanoelectronics with van der Waals junctions.

6.
Small ; 15(2): e1804337, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30506848

RESUMO

The intensity ratio of the 2D band to the G band, I2D /IG , is a good criterion in selecting high quality monolayer graphene samples; however, the evaluation of the ultimate value of I2D /IG for intrinsic monolayer graphene is a challenging yet interesting issue. Here, an interesting tension-induced Raman enhancement phenomenon is reported in supported graphene membranes, which show a transition from the corrugated state to the stretched state in the vicinity of wells. The I2D /IG of substrate-supported graphene membranes near wells are significantly enhanced up to 16.74, which is the highest experimental value to the best of knowledge, increasing by more than 600% when the testing points approach the well edges.The macroscopic origin of this phenomenon is that corrugated graphene membranes are stretched by built-in tensions. A lattice dynamic model is proposed to successfully reveal the microscopic mechanism of this phenomenon. The theoretical results agree well with the experimental data, demonstrating that tensile stresses can depress the amplitude of in-plane vibration of sp2 -bonded carbon atoms and result in the decrease in the G band intensity. This work can be helpful in furthering the development of the method of suppressing small ripples in graphene and acquiring ultraflat 2D materials.

7.
Nanotechnology ; 30(7): 074004, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523993

RESUMO

We report a NO2 gas sensor based on germanium quantum dots (GeQDs)/graphene hybrids. Graphene was directly grown on germanium through chemical vapor deposition and the GeQDs were synthesized via molecular beam epitaxy. The samples were characterized by atomic force microscope, Raman spectra, scanning electron microscope, x-ray photoelectron spectroscope and transmission electron microscope with energy dispersive x-ray. By introducing GeQDs on graphene, the gas sensor sensitivity to NO2 was improved substantially. With the optimization of the growth time of GeQDs (600 s), the response sensitivity to 10 ppm NO2 can be as high as 3.88, which is 20 times higher than that of the graphene sensor without GeQDs decoration. In addition, the 600 s GeQDs/graphene hybrid sensor exhibits fast response and recovery rates as well as excellent stability. Our work may provide a new route to produce low-power consumption, portable, and room temperature gas sensor which is amenable to mass production.

8.
Small ; 13(28)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28561931

RESUMO

Direct growth of graphene on dielectric substrates is a prerequisite to the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis methods on dielectric substrates always involve a metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. Herein, a semiconducting, germanium (Ge)-assisted, chemical vapor deposition approach is proposed to produce monolayer graphene directly on arbitrary dielectric substrates. By the prepatterning of a catalytic Ge layer, the graphene with desired pattern can be achieved conveniently and readily. Due to the catalysis of Ge, monolayer graphene is able to form on Ge-covered dielectric substrates including SiO2 /Si, quartz glass, and sapphire substrates. Optimization of the process parameters leads to complete sublimation of the catalytic Ge layer during or immediately after formation of the monolayer graphene, enabling direct deposition of large-area and continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on a transparent dielectric substrate using the proposed approach has exhibited a wide range of applications, including in both defogger and thermochromic displays, as already successfully demonstrated here.

9.
Small ; 11(33): 4140-8, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25966037

RESUMO

As the promising building blocks for flexible electronics and photonics, inorganic semiconductor nanomembranes have attracted considerable attention owing to their excellent mechanical flexibility and electrical/optical properties. To functionalize these building blocks with complex components, transfer and printing methods in a convenient and precise way are urgently demanded. A combined and controllable approach called edge-cutting transfer method to assemble semiconductor nanoribbons with defined width (down to submicrometer) and length (up to millimeter) is proposed. The transfer efficiency can be comprehended by a classical cantilever model, in which the difference of stress distributions between forth and back edges is investigated using finite element method. In addition, the vertical van der Waals PN (p-Si/n-Ge) junction constructed by a two-round process presents a typical rectifying behavior. The proposed technology may provide a practical, reliable, and cost-efficient strategy for transfer and printing routines, and thus expediting its potential applications for roll-to-roll productions for flexible devices.

10.
Adv Mater ; 34(48): e2201630, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35589374

RESUMO

Piezoelectricity in 2D transition metal dichalcogenides (TMDs) has attracted considerable interest because of their excellent flexibility and high piezoelectric coefficient compared to conventional piezoelectric bulk materials. However, the ability to regulate the piezoelectric properties is limited because the entropy is constant for certain binary TMDs other than multielement ones. Herein, in order to increase the entropy, a ternary TMDs alloy, Mo1- x Wx S2 , with different W concentrations, is synthesized. The W concentration in the Mo1- x Wx S2 alloy can be controlled precisely in the low-supersaturation synthesis and the entropy can be tuned accordingly. The Mo0.46 W0.54 S2 alloy (x = 0.54) has the highest configurational entropy and best piezoelectric properties, such as a piezoelectric coefficient of 4.22 pm V-1 and a piezoelectric output current of 150 pA at 0.24% strain. More importantly, it can be combined into a larger package to increase the output current to 600 pA to cater to self-powered applications. Combining with excellent mechanical durability, a mechanical sensor based on the Mo0.46 W0.54 S2 alloy is demonstrated for real-time health monitoring.

11.
ACS Appl Mater Interfaces ; 14(12): 14764-14773, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306813

RESUMO

Three-dimensional graphene (3D-graphene) is used in surface-enhanced Raman spectroscopy (SERS) because of its plasmonic nanoresonator structure and good ability to interact with light. However, a thin (3-5 nm) layer of amorphous carbon (AC) inevitably appears as a template layer between the 3D-graphene and object substrate when the 3D-graphene layer is synthesized, weakening the enhancement factor. Herein, two-dimensional graphene (2D-graphene) is employed as a template layer to directly synthesize 3D-graphene on a germanium (Ge) substrate via plasma-assisted chemical vapor deposition, bypassing the formation of an AC layer. The interaction and photoinduced charge transfer ability of the 3D-graphene/Ge heterojunction with incident light are improved. Moreover, the high density of electronic states close to the Fermi level of the heterojunction induces the adsorbed probe molecules to efficiently couple to the 3D-graphene-based SERS substrate. Our experimental results imply that the lowest concentrations of rhodamine 6G and rhodamine B that can be detected on the 3D/2D-graphene/Ge SERS substrate correspond to 10-10 M; for methylene blue, it is 10-8 M. The detection limits of the 3D/2D-graphene/Ge SERS substrate with respect to 3-hydroxytyramine hydrochloride and melamine (in milk) are both less than 1 ppm. This work may provide a viable and convenient alternative method for preparing 3D-graphene SERS substrates. It also constitutes a new approach to developing SERS substrates with remarkable performance levels.

12.
Nat Commun ; 13(1): 2990, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637222

RESUMO

The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO3-δ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO3-δ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO3-δ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO3-δ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides.

13.
Micromachines (Basel) ; 12(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067419

RESUMO

Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.

14.
ACS Appl Mater Interfaces ; 12(13): 15606-15614, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32157866

RESUMO

Three-dimensional graphene (3D-Gr) with excellent light absorption properties has received enormous interest, but in conventional processes to prepare 3D-Gr, amorphous carbon layers are inevitably introduced as buffer layers that may degrade the performance of graphene-based devices. Herein, 3D-Gr is prepared on germanium (Ge) using two-dimensional graphene (2D-Gr) as the buffer layer. 2D-Gr as the buffer layer facilitates the in situ synthesis of 3D-Gr on Ge by plasma-enhanced chemical vapor deposition (PECVD) by promoting 2D-Gr nucleation and reducing the barrier height. The growth mechanism is investigated and described. The enhanced light absorption as confirmed by theoretical calculation and 3D-Gr/2D-Gr/Ge with a Schottky junction improves the performance of optoelectronic devices without requiring pre- and post-transfer processes. The photodetector constructed with 3D-Gr/2D-Gr/Ge shows an excellent responsivity of 1.7 A W-1 and detectivity 3.42 × 1014 cm Hz1/2 W-1 at a wavelength of 1550 nm. This novel hybrid structure that incorporates 3D- and 2D-Gr into Ge-based integrated circuits and photodetectors delivers excellent performance and has large commercial potential.

15.
Nat Commun ; 10(1): 3127, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311927

RESUMO

Graphene nanobubbles (GNBs) have attracted much attention due to the ability to generate large pseudo-magnetic fields unattainable by ordinary laboratory magnets. However, GNBs are always randomly produced by the reported protocols, therefore, their size and location are difficult to manipulate, which restricts their potential applications. Here, using the functional atomic force microscopy (AFM), we demonstrate the ability to form programmable GNBs. The precision of AFM facilitates the location definition of GNBs, and their size and shape are tuned by the stimulus bias of AFM tip. With tuning the tip voltage, the bubble contour can gradually transit from parabolic to Gaussian profile. Moreover, the unique three-fold symmetric pseudo-magnetic field pattern with monotonous regularity, which is only theoretically predicted previously, is directly observed in the GNB with an approximately parabolic profile. Our study may provide an opportunity to study high magnetic field regimes with the designed periodicity in two dimensional materials.

16.
Nat Commun ; 9(1): 2159, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867112

RESUMO

Two magnetic-field-induced quantum critical behaviors were recently discovered in two dimensional electron gas (2DEG) at LaTiO3/SrTiO3 interface and interpreted by disordered superconducting puddles coupled through 2DEG. In this scenario, the 2DEG is proposed to undergo a spontaneous phase separation and breaks up into locally superconducting puddles in a metallic matrix. However, as the inhomogeneous superconducting 2DEG is only illative, this proposal still lacks the direct experimental demonstration. Here, we artificially construct superconducting puddles-2DEG hybrid system by depositing tin nanoislands array on single crystalline monolayer graphene, where the two quantum critical behaviors are reproduced. Through the finite-size scaling analysis on magnetoresistivity, we show that the two quantum critical behaviors result from the intra-island and inter-island phase coherence, respectively, which are further illustrated by the phase diagram. This work provides a platform to study superconducting quantum phase transitions in a 2D system and helps to integrate superconducting devices into semiconductor technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA