Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Mol Genet ; 31(21): 3694-3714, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35567546

RESUMO

Parkinson's disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Epigênese Genética , Epigenômica , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais/genética , Glutamatos/genética , Glutamatos/metabolismo
2.
Mov Disord ; 38(9): 1585-1597, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449706

RESUMO

Parkinson's disease (PD) biomarkers are needed by both clinicians and researchers (for diagnosis, identifying study populations, and monitoring therapeutic response). Imaging, genetic, and biochemical biomarkers have been widely studied. In recent years, extracellular vesicles (EVs) have become a promising material for biomarker development. Proteins and molecular material from any organ, including the central nervous system, can be packed into EVs and transported to the periphery into easily obtainable biological specimens like blood, urine, and saliva. We performed a systematic review and meta-analysis of articles (published before November 15, 2022) reporting biomarker assessment in EVs in PD patients and healthy controls (HCs). Biomarkers were analyzed using random effects meta-analysis and the calculated standardized mean difference (Std.MD). Several proteins and ribonucleic acids have been identified in EVs in PD patients, but only α-synuclein (aSyn) and leucine-rich repeat kinase 2 (LRRK2) were reported in sufficient studies (n = 24 and 6, respectively) to perform a meta-analysis. EV aSyn was significantly increased in neuronal L1 cell adhesion molecule (L1CAM)-positive blood EVs in PD patients compared to HCs (Std.MD = 1.84, 95% confidence interval = 0.76-2.93, P = 0.0009). Further analysis of the biological sample and EV isolation method indicated that L1CAM-IP (immunoprecipitation) directly from plasma was the best isolation method for assessing aSyn in PD patients. Upcoming neuroprotective clinical trials immediately need peripheral biomarkers for identifying individuals at risk of developing PD. Overall, the improved sensitivity of assays means they can identify biomarkers in blood that reflect changes in the brain. CNS-derived EVs in blood will likely play a major role in biomarker development in the coming years. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Vesículas Extracelulares , Molécula L1 de Adesão de Célula Nervosa , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Biomarcadores , Vesículas Extracelulares/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Doença de Parkinson/metabolismo
3.
Neurobiol Dis ; 170: 105744, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35513230

RESUMO

Immune-related alterations in Parkinson's disease (PD) can be monitored by assessing peripheral biological fluids that show that specific inflammatory pathways contribute to a chronic pro-inflammatory status. This pro-inflammatory activity is hypothesized to be already present in the prodromal stages of PD. These pathways maintain and reinforce chronic neurodegeneration by stimulating cell activation and proliferation what triggers the pro-inflammatory status as well. The gut microbiome possibly contributes to inflammatory pathways and shows specific differences in fecal samples from PD compared to healthy controls. In PD, Bacteroides abundance correlates with inflammatory markers in blood and motor impairment. Increased pro-inflammatory and decreased anti-inflammatory bacterial colonization can lead to changes in the metabolic pathways of amino acids, inducing increased membrane permeability, described as a leaky gut, enabling advanced contact between immune cells and gut microbiome and potentially a spreading of neuroinflammation through the body via the blood. Increased cytokine blood levels in PD are correlated with disease severity, motor symptoms, and clinical phenotypes. α-synuclein is a central player in PD-associated inflammation, inducing specific T-cell activity and triggering microglial activation in the central nervous system (CNS). Misfolded α-synuclein propagation possibly results in the spreading of aggregated α-synuclein from neuron to neuron leading to a sustained neuroinflammation. This is supported by age-dependent defects of protein uptake in microglia and monocytes, so-called "inflammaging", including α-synuclein oligomers, as the key pathological protein in PD. Genetic risk markers and inherited forms of PD are also associated with inflammation, which is highly relevant for potential therapeutical targets. The documented associations of inflammatory markers and clinical phenotypes indicate a pro-inflammatory concept of specific PD pathophysiology here. An in-depth understanding of inflammatory mechanisms in PD from bottom (gut) to top (CNS) and vice versa is needed to design novel immunomodulatory approaches to delay or even stop PD. Future studies focusing on structured protocols in large patient cohorts with appropriate control groups and comparative analysis among studies will aid the discovery of novel candidate biomarkers.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Biomarcadores/metabolismo , Humanos , Inflamação/metabolismo , Microglia/metabolismo , Monócitos/patologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
4.
FASEB J ; 34(11): 15123-15145, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931072

RESUMO

Parkinson's disease is biochemically characterized by the deposition of aberrant aggregated α-synuclein in the affected neurons. The aggregation properties of α-synuclein greatly depend on its affinity to bind cellular membranes via a dynamic interaction with specific lipid moieties. In particular, α-synuclein can interact with arachidonic acid (AA), a polyunsaturated fatty acid, in a manner that promotes the formation of α-helix enriched assemblies. In a cellular context, AA is released from membrane phospholipids by phospholipase A2 (PLA2 ). To investigate the impact of PLA2 activity on α-synuclein aggregation, we have applied selective PLA2 inhibitors to a SH-SY5Y cellular model where the expression of human wild-type α-synuclein is correlated with a gradual accumulation of soluble oligomers and subsequent cell death. We have found that pharmacological and genetic inhibition of GIVA cPLA2 resulted in a dramatic decrease of intracellular oligomeric and monomeric α-synuclein significantly promoting cell survival. Our data suggest that alterations in the levels of free fatty acids, and especially AA and adrenic acid, promote the formation of α-synuclein conformers which are more susceptible to proteasomal degradation. This mechanism is active only in living cells and is generic since it does not depend on the absolute quantity of α-synuclein, the presence of disease-linked point mutations, the expression system or the type of cells. Our findings indicate that the α-synuclein-fatty acid interaction can be a critical determinant of the conformation and fate of α-synuclein in the cell interior and, as such, cPLA2 inhibitors could serve to alleviate the intracellular, potentially pathological, α-synuclein burden.


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Neurônios/citologia , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/química , alfa-Sinucleína/metabolismo , Sobrevivência Celular , Células Cultivadas , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteólise
5.
J Neurochem ; 153(4): 433-454, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31957016

RESUMO

Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.


Assuntos
Congressos como Assunto/tendências , Sinucleinopatias/diagnóstico , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Mutação/fisiologia , Portugal , Sinucleinopatias/genética
6.
Curr Neurol Neurosci Rep ; 19(10): 72, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31440934

RESUMO

PURPOSE OF REVIEW: In the quest for understanding the pathophysiological processes underlying degeneration of nervous systems, synapses are emerging as sites of great interest as synaptic dysfunction is thought to play a role in the initiation and progression of neuronal loss. In particular, the synapse is an interesting target for the effects of epigenetic mechanisms in neurodegeneration. Here, we review the recent advances on epigenetic mechanisms driving synaptic compromise in major neurodegenerative disorders. RECENT FINDINGS: Major developments in sequencing technologies enabled the mapping of transcriptomic patterns in human postmortem brain tissues in various neurodegenerative diseases, and also in cell and animal models. These studies helped identify changes in classical neurodegeneration pathways and discover novel targets related to synaptic degeneration. Identifying epigenetic patterns indicative of synaptic defects prior to neuronal degeneration may provide the basis for future breakthroughs in the field of neurodegeneration.


Assuntos
Epigênese Genética/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Sinapses/fisiologia , Animais , Metilação de DNA , Humanos , Doenças Neurodegenerativas/metabolismo
7.
Neurobiol Dis ; 119: 121-135, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092270

RESUMO

Alpha-synuclein (aSyn) is the major protein component of Lewy bodies and Lewy neurites, the typical pathological hallmarks in Parkinson's disease (PD) and Dementia with Lewy bodies. aSyn is capable of inducing transcriptional deregulation, but the precise effect of specific aSyn mutants associated with familial forms of PD, remains unclear. Here, we used transgenic mice overexpressing human wild-type (WT) or A30P aSyn to compare the transcriptional profiles of the two animal models. We found that A30P aSyn promotes strong transcriptional deregulation and increases DNA binding. Interestingly, COL4A2, a major component of basement membranes, was found to be upregulated in both A30P aSyn transgenic mice and in dopaminergic neurons expressing A30P aSyn, suggesting a crucial role for collagen related genes in aSyn-induced toxicity. Finally, we observed that A30P aSyn alters Golgi morphology and increases the susceptibility to endoplasmic reticulum (ER) stress in dopaminergic cells. In total, our findings provide novel insight into the putative role of aSyn on transcription and on the molecular mechanisms involved, thereby opening novel avenues for future therapeutic interventions in PD and other synucleinopathies.


Assuntos
Colágeno Tipo IV/biossíntese , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Fragmentos de Peptídeos/biossíntese , alfa-Sinucleína/biossíntese , Animais , Células Cultivadas , Colágeno Tipo IV/genética , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , alfa-Sinucleína/genética
8.
Brain ; 139(Pt 3): 871-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26912647

RESUMO

α-Synuclein is readily released in human and mouse brain parenchyma, even though the normal function of the secreted protein has not been yet elucidated. Under pathological conditions, such as in Parkinson's disease, pathologically relevant species of α-synuclein have been shown to propagate between neurons in a prion-like manner, although the mechanism by which α-synuclein transfer induces degeneration remains to be identified. Due to this evidence extracellular α-synuclein is now considered a critical target to hinder disease progression in Parkinson's disease. Given the importance of extracellular α-synuclein levels, we have now investigated the molecular pathway of α-synuclein secretion in mouse brain. To this end, we have identified a novel synaptic network that regulates α-synuclein release in mouse striatum. In this brain area, the majority of α-synuclein is localized in corticostriatal glutamatergic terminals. Absence of α-synuclein from the lumen of brain-isolated synaptic vesicles suggested that they are unlikely to mediate its release. To dissect the mechanism of α-synuclein release, we have used reverse microdialysis to locally administer reagents that locally target specific cellular pathways. Using this approach, we show that α-synuclein secretion in vivo is a calcium-regulated process that depends on the activation of sulfonylurea receptor 1-sensitive ATP-regulated potassium channels. Sulfonylurea receptor 1 is distributed in the cytoplasm of GABAergic neurons from where the ATP-dependent channel regulates GABA release. Using a combination of specific agonists and antagonists, we were able to show that, in the striatum, modulation of GABA release through the sulfonylurea receptor 1-regulated ATP-dependent potassium channels located on GABAergic neurons controls α-synuclein release from the glutamatergic terminals through activation of the presynaptic GABAB receptors. Considering that sulfonylurea receptors can be selectively targeted, our study highlights the potential use of the key molecules in the α-synuclein secretory pathway to aid the discovery of novel therapeutic interventions for Parkinson's disease.


Assuntos
Corpo Estriado/metabolismo , Canais KATP/metabolismo , Transmissão Sináptica/fisiologia , alfa-Sinucleína/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Moduladores GABAérgicos/farmacologia , Humanos , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de GABA-B/metabolismo , Transmissão Sináptica/efeitos dos fármacos
9.
NPJ Parkinsons Dis ; 10(1): 102, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760408

RESUMO

Lysosomal and synaptic dysfunctions are hallmarks in neurodegeneration and potentially relevant as biomarkers, but data on early Parkinson's disease (PD) is lacking. We performed targeted mass spectrometry with an established protein panel, assessing autophagy and synaptic function in cerebrospinal fluid (CSF) of drug-naïve de novo PD, and sex-/age-matched healthy controls (HC) cross-sectionally (88 PD, 46 HC) and longitudinally (104 PD, 58 HC) over 10 years. Multiple markers of autophagy, synaptic plasticity, and secretory pathways were reduced in PD. We added samples from prodromal subjects (9 cross-sectional, 12 longitudinal) with isolated REM sleep behavior disorder, revealing secretogranin-2 already decreased compared to controls. Machine learning identified neuronal pentraxin receptor and neurosecretory protein VGF as most relevant for discriminating between groups. CSF levels of LAMP2, neuronal pentraxins, and syntaxins in PD correlated with clinical progression, showing predictive potential for motor- and non-motor symptoms as a valid basis for future drug trials.

10.
Nat Commun ; 15(1): 4759, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890280

RESUMO

Parkinson's disease is increasingly prevalent. It progresses from the pre-motor stage (characterised by non-motor symptoms like REM sleep behaviour disorder), to the disabling motor stage. We need objective biomarkers for early/pre-motor disease stages to be able to intervene and slow the underlying neurodegenerative process. Here, we validate a targeted multiplexed mass spectrometry assay for blood samples from recently diagnosed motor Parkinson's patients (n = 99), pre-motor individuals with isolated REM sleep behaviour disorder (two cohorts: n = 18 and n = 54 longitudinally), and healthy controls (n = 36). Our machine-learning model accurately identifies all Parkinson patients and classifies 79% of the pre-motor individuals up to 7 years before motor onset by analysing the expression of eight proteins-Granulin precursor, Mannan-binding-lectin-serine-peptidase-2, Endoplasmatic-reticulum-chaperone-BiP, Prostaglaindin-H2-D-isomaerase, Interceullular-adhesion-molecule-1, Complement C3, Dickkopf-WNT-signalling pathway-inhibitor-3, and Plasma-protease-C1-inhibitor. Many of these biomarkers correlate with symptom severity. This specific blood panel indicates molecular events in early stages and could help identify at-risk participants for clinical trials aimed at slowing/preventing motor Parkinson's disease.


Assuntos
Biomarcadores , Doença de Parkinson , Proteômica , Humanos , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Biomarcadores/sangue , Masculino , Proteômica/métodos , Feminino , Idoso , Pessoa de Meia-Idade , Aprendizado de Máquina , Transtorno do Comportamento do Sono REM/sangue , Transtorno do Comportamento do Sono REM/diagnóstico , Estudos de Casos e Controles , Espectrometria de Massas
11.
J Parkinsons Dis ; 13(2): 179-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744345

RESUMO

BACKGROUND: Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE: We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS: We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS: We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION: To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.


Assuntos
MicroRNAs , Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Sinucleinopatias/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Plasticidade Neuronal , Proteínas do Tecido Nervoso
12.
Prog Brain Res ; 252: 91-129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32247376

RESUMO

Alpha-synuclein (aSyn) was identified as the main component of inclusions that define synucleinopathies more than 20 years ago. Since then, aSyn has been extensively studied in an attempt to unravel its roles in both physiology and pathology. Today, studying the mechanisms of aSyn toxicity remains in the limelight, leading to the identification of novel pathways involved in pathogenesis. In this chapter, we address the molecular mechanisms involved in synucleinopathies, from aSyn misfolding and aggregation to the various cellular effects and pathologies associated. In particular, we review our current understanding of the mechanisms involved in the spreading of aSyn between different cells, from the periphery to the brain, and back. Finally, we also review recent studies on the contribution of inflammation and the gut microbiota to pathology in synucleinopathies. Despite significant advances in our understanding of the molecular mechanisms involved, we still lack an integrated understanding of the pathways leading to neurodegeneration in PD and other synucleinopathies, compromising our ability to develop novel therapeutic strategies.


Assuntos
Inflamação/metabolismo , Microbiota , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos , Sinucleinopatias/genética , Sinucleinopatias/patologia , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA