Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Cell Physiol ; 324(2): C573-C587, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622066

RESUMO

The anthelmintic drug praziquantel (PZQ) causes contraction of parasitic schistosomes as well as constriction of blood vessels within the mesenteric vasculature of the host where the adult blood flukes reside. The contractile action of PZQ on the vasculature is mediated by the activation of host serotonergic 5-HT2B receptors (5-HT2BRs). However, the molecular basis for PZQ interaction with these targets and the location of these 5-HT2B receptors in the vessel wall have not been experimentally defined. Evaluation of a PZQ docking pose within the 5-HT2BR orthosteric site, using both Ca2+ reporter and bioluminescence resonance energy transfer (BRET) assays, identified residues F3406.51 and F3416.52 (transmembrane helix 6, TM6) as well as L209EL2 (extracellular loop 2) as critical for PZQ-mediated agonist activity. A key determinant of PZQ selectivity for the 5-HT2B receptor over the 5-HT2A/2C receptors was determined by M2185.39 in transmembrane helix 5 (TM5) of the orthosteric site. Mutation of this residue to valine (M218V), as found in 5-HT2A and 5-HT2C, decreased PZQ agonist activity, whereas the reciprocal mutation (V215M) in 5-HT2C increased PZQ activity. Two-photon imaging in intact mesenteric arterial strips visualized PZQ-evoked Ca2+ transients within the smooth muscle cells of the vessel wall. PZQ also triggered cytoplasmic Ca2+ signals in arterial smooth muscle cells in primary culture that were isolated from mesenteric blood vessels. These data define the molecular basis for PZQ action on 5-HT2B receptors localized in vascular smooth muscle.


Assuntos
Anti-Helmínticos , Praziquantel , Praziquantel/farmacologia , Serotonina , Anti-Helmínticos/uso terapêutico , Artérias
2.
J Endocrinol ; 262(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829257

RESUMO

Cells actively engaged in de novo steroidogenesis rely on an expansive intracellular network to efficiently transport cholesterol. The final link in the transport chain is STARD1, which transfers cholesterol to the enzyme complex that initiates steroidogenesis. However, the regulation of ovarian STARD1 is not fully characterized, and even less is known about the upstream cytosolic cholesterol transporters STARD4 and STARD6. Here, we identified both STARD4 and STARD6 mRNAs in the human ovary but only detected STARD4 protein since the primary STARD6 transcript turned out to be a splice variant. Corpora lutea contained the highest levels of STARD4 and STARD1 mRNA and STARD1 protein, while STARD4 protein was uniformly distributed across ovarian tissues. Cyclic AMP analog (8Br-cAMP) and phorbol ester (PMA) individually increased STARD1 and STARD4 mRNA along with STARD1 protein and its phosphoform in cultured primary human luteinized granulosa cells (hGCs). STARD6 transcripts and STARD4 protein were unresponsive to these stimuli. Combining lower doses of PMA and 8Br-cAMP blunted the 8Br-cAMP stimulation of STARD1 protein. Increasing cholesterol levels by blocking its conversion to steroid with aminoglutethimide or by adding LDL reduced the STARD4 mRNA response to stimuli. Sterol depletion reduced the STARD1 mRNA and protein response to PMA. These data support a possible role for STARD4, but not STARD6, in supplying cholesterol for steroidogenesis in the ovary. We demonstrate for the first time how cAMP, PMA and sterol pathways separately and in combination differentially regulate STARD4, STARD6 and STARD1 mRNA levels, as well as STARD1 and STARD4 protein in human primary ovarian cells.


Assuntos
Ovário , Humanos , Feminino , Ovário/metabolismo , Colesterol/metabolismo , Células Cultivadas , RNA Mensageiro/metabolismo , Adulto , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras
3.
Int J Parasitol ; 53(8): 415-425, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610556

RESUMO

Ion channels have proved to be productive targets for anthelmintic chemotherapy. One example is the recent discovery of a parasitic flatworm ion channel targeted by praziquantel (PZQ), the main clinical therapy used for treatment of schistosomiasis. The ion channel activated by PZQ - a transient receptor potential ion channel of the melastatin subfamily, named TRPMPZQ - is a Ca2+-permeable ion channel expressed in all parasitic flatworms that are PZQ-sensitive. However, little is currently known about the electrophysiological properties of this target that mediates the deleterious action of PZQ on many trematodes and cestodes. Here, we provide a detailed biophysical characterization of the properties of Schistosoma mansoni TRPMPZQ channel (Sm.TRPMPZQ) in response to PZQ. Single channel electrophysiological analysis demonstrated that Sm.TRPMPZQ when activated by PZQ is a non-selective, large conductance, voltage-insensitive cation channel that displays distinct properties from human TRPM paralogs. Sm.TRPMPZQ is Ca2+-permeable but does not require Ca2+ for channel gating in response to PZQ. TRPMPZQ from Schistosoma japonicum (Sj.TRPMPZQ) and Schistosoma haematobium (Sh.TRPMPZQ) displayed similar characteristics. Profiling Sm.TRPMPZQ responsiveness to PZQ has established a biophysical signature for this channel that will aid future investigation of endogenous TRPMPZQ activity, as well as analyses of endogenous and exogenous regulators of this novel, druggable antiparasitic target.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Animais , Humanos , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Canais de Potencial de Receptor Transitório/uso terapêutico , Canais de Cátion TRPM/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Schistosoma mansoni , Esquistossomose mansoni/tratamento farmacológico
4.
PLoS Negl Trop Dis ; 15(11): e0009898, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34731172

RESUMO

Given the worldwide burden of neglected tropical diseases, there is ongoing need to develop novel anthelmintic agents to strengthen the pipeline of drugs to combat these burdensome infections. Many diseases caused by parasitic flatworms are treated using the anthelmintic drug praziquantel (PZQ), employed for decades as the key clinical agent to treat schistosomiasis. PZQ activates a flatworm transient receptor potential (TRP) channel within the melastatin family (TRPMPZQ) to mediate sustained Ca2+ influx and worm paralysis. As a druggable target present in many parasitic flatworms, TRPMPZQ is a promising target for a target-based screening campaign with the goal of discovering novel regulators of this channel complex. Here, we have optimized methods to miniaturize a Ca2+-based reporter assay for Schistosoma mansoni TRPMPZQ (Sm.TRPMPZQ) activity enabling a high throughput screening (HTS) approach. This methodology will enable further HTS efforts against Sm.TRPMPZQ as well as other flatworm ion channels. A pilot screen of ~16,000 compounds yielded a novel activator of Sm.TRPMPZQ, and numerous potential blockers. The new activator of Sm.TRPMPZQ represented a distinct chemotype to PZQ, but is a known chemical entity previously identified by phenotypic screening. The fact that a compound prioritized from a phenotypic screening campaign is revealed to act, like PZQ, as an Sm.TRPMPZQ agonist underscores the validity of TRPMPZQ as a druggable target for antischistosomal ligands.


Assuntos
Anti-Helmínticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Praziquantel/farmacologia , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Anti-Helmínticos/química , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Masculino , Camundongos , Praziquantel/química , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
5.
Sci Transl Med ; 13(625): eabj5832, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936384

RESUMO

Praziquantel (PZQ) is an essential medicine for treating parasitic flatworm infections such as schistosomiasis, which afflicts over 250 million people. However, PZQ is not universally effective, lacking activity against liver flukes of the Fasciola genus. The reason for this insensitivity is unclear, as the mechanism of PZQ action is unknown. Here, we use ligand- and target-based methods to demonstrate that PZQ activates a transient receptor potential melastatin ion channel (TRPMPZQ) in schistosomes by engaging a hydrophobic ligand binding pocket within the voltage sensor­like domain of the channel to cause calcium entry and worm paralysis. PZQ activates TRPMPZQ homologs in other PZQ-sensitive flukes, but not Fasciola hepatica. However, a single amino acid change in the F. hepatica TRPMPZQ binding pocket, to mimic schistosome TRPMPZQ, confers PZQ sensitivity. After decades of clinical use, the molecular basis of PZQ action at a druggable TRP channel is resolved.


Assuntos
Anti-Helmínticos , Platelmintos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Humanos , Canais Iônicos/metabolismo , Praziquantel/metabolismo , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma/metabolismo
6.
PLoS Negl Trop Dis ; 12(4): e0006420, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668703

RESUMO

The anthelmintic praziquantel (±PZQ) serves as a highly effective antischistosomal therapy. ±PZQ causes a rapid paralysis of adult schistosome worms and deleterious effects on the worm tegument. In addition to these activities against the parasite, ±PZQ also modulates host vascular tone in blood vessels where the adult worms reside. In resting mesenteric arteries ±PZQ causes a constriction of basal tone, an effect mediated by (R)-PZQ activation of endogenous serotoninergic G protein coupled receptors (GPCRs). Here, we demonstrate a novel vasodilatory action of ±PZQ in mesenteric vessels that are precontracted by high potassium-evoked depolarization, an effect previously reported to be associated with agonists of the transient receptor potential melastatin 8 channel (TRPM8). Pharmacological profiling a panel of 17 human TRPs demonstrated ±PZQ activity against a subset of human TRP channels. Several host TRP channels (hTRPA1, hTRPC3, hTRPC7) were activated by both (R)-PZQ and (S)-PZQ over a micromolar range whereas hTRPM8 showed stereoselective activation by (S)-PZQ. The relaxant effect of ±PZQ in mesenteric arteries was caused by (S)-PZQ, and mimicked by TRPM8 agonists. However, persistence of both (S)-PZQ and TRPM8 agonist evoked vessel relaxation in TRPM8 knockout tissue suggested that canonical TRPM8 does not mediate this (S)-PZQ effect. We conclude that (S)-PZQ is vasoactive over the micromolar range in mesenteric arteries although the molecular mediators of this effect remain to be identified. These data expand our knowledge of the polypharmacology and host vascular efficacy of this clinically important anthelmintic.


Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Canais de Cátion TRPM/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Feminino , Células HEK293 , Humanos , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Estereoisomerismo , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA