Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 23(6): e53641, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417070

RESUMO

Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody-mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody-mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood-stage P. falciparum isolates. We identify neutrophil ICAM-1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.


Assuntos
Malária Cerebral , Malária Falciparum , Plasmodium falciparum , Eritrócitos/parasitologia , Humanos , Malária Cerebral/genética , Malária Cerebral/metabolismo , Malária Falciparum/genética , Neutrófilos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555109

RESUMO

Obstructive sleep apnea (OSA) is a highly prevalent condition, characterized by intermittent hypoxia (IH), sleep disruption, and altered autonomic nervous system function. OSA has been independently associated with dyslipidemia, insulin resistance, and metabolic syndrome. Brown adipose tissue (BAT) has been suggested as a modulator of systemic glucose tolerance through adaptive thermogenesis. Reductions in BAT mass have been associated with obesity and metabolic syndrome. No studies have systematically characterized the effects of chronic IH on BAT. Thus, we aimed to delineate IH effects on BAT and concomitant metabolic changes. C57BL/6J 8-week-old male mice were randomly assigned to IH during sleep (alternating 90 s cycles of 6.5% FIO2 followed by 21% FIO2) or normoxia (room air, RA) for 10 weeks. Mice were subjected to glucose tolerance testing and 18F-FDG PET-MRI towards the end of the exposures followed by BAT tissues analyses for morphological and global transcriptomic changes. Animals exposed to IH were glucose intolerant despite lower total body weight and adiposity. BAT tissues in IH-exposed mice demonstrated characteristic changes associated with "browning"-smaller lipids, increased vascularity, and a trend towards higher protein levels of UCP1. Conversely, mitochondrial DNA content and protein levels of respiratory chain complex III were reduced. Pro-inflammatory macrophages were more abundant in IH-exposed BAT. Transcriptomic analysis revealed increases in fatty acid oxidation and oxidative stress pathways in IH-exposed BAT, along with a reduction in pathways related to myogenesis, hypoxia, and IL-4 anti-inflammatory response. Functionally, IH-exposed BAT demonstrated reduced absorption of glucose on PET scans and reduced phosphorylation of AKT in response to insulin. Current studies provide initial evidence for the presence of a maladaptive response of interscapular BAT in response to chronic IH mimicking OSA, resulting in a paradoxical divergence, namely, BAT browning but tissue-specific and systemic insulin resistance. We postulate that oxidative stress, mitochondrial dysfunction, and inflammation may underlie these dichotomous outcomes in BAT.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Apneia Obstrutiva do Sono , Masculino , Animais , Camundongos , Resistência à Insulina/fisiologia , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Hipóxia/metabolismo , Obesidade/complicações , Insulina , Glucose/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Tecido Adiposo Marrom/metabolismo , Sono
3.
Front Immunol ; 13: 849701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911772

RESUMO

Breast tumors and their derived circulating cancer cells express the leukocyte ß2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.


Assuntos
Neoplasias Pulmonares , Linfócitos T Citotóxicos , Animais , Linhagem Celular Tumoral , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina , Microambiente Tumoral
4.
Cells ; 10(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203915

RESUMO

The PD-L1/PD-1 axis mediates immune tolerance and promotes tumor growth and progression via the inhibition of anti-tumor immunity. Blocking the interaction between PD-L1 and PD-1 was clinically shown to be beneficial in maintaining the anti-tumor functions of the adaptive immune system. Still, the consequences of blocking the PD-L1/PD-1 axis on innate immune responses remain largely unexplored. In this context, neutrophils were shown to consist of distinct subpopulations, which possess either pro- or anti-tumor properties. PD-L1-expressing neutrophils are considered pro-tumor as they are able to suppress cytotoxic T cells and are propagated with disease progression. That said, we found that PD-L1 expression is not limited to tumor promoting neutrophils, but is also evident in anti-tumor neutrophils. We show that neutrophil cytotoxicity is effectively and efficiently blocked by tumor cell-expressed PD-1. Furthermore, the blocking of either neutrophil PD-L1 or tumor cell PD-1 maintains neutrophil cytotoxicity. Importantly, we show that tumor cell PD-1 blocks neutrophil cytotoxicity and promotes tumor growth via a mechanism independent of adaptive immunity. Taken together, these findings highlight the therapeutic potential of enhancing anti-tumor innate immune responses via blocking of the PD-L1/PD-1 axis.


Assuntos
Antígeno B7-H1/metabolismo , Neutrófilos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Imunidade Adaptativa , Animais , Antígeno B7-H1/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Tolerância Imunológica , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Neoplasias/metabolismo , Neoplasias/patologia , Neutrófilos/fisiologia , Receptor de Morte Celular Programada 1/fisiologia
5.
Nat Commun ; 11(1): 3259, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591509

RESUMO

Fusobacterium nucleatum is an oral anaerobe recently found to be prevalent in human colorectal cancer (CRC) where it is associated with poor treatment outcome. In mice, hematogenous F. nucleatum can colonize CRC tissue using its lectin Fap2, which attaches to tumor-displayed Gal-GalNAc. Here, we show that Gal-GalNAc levels increase as human breast cancer progresses, and that occurrence of F. nucleatum gDNA in breast cancer samples correlates with high Gal-GalNAc levels. We demonstrate Fap2-dependent binding of the bacterium to breast cancer samples, which is inhibited by GalNAc. Intravascularly inoculated Fap2-expressing F. nucleatum ATCC 23726 specifically colonize mice mammary tumors, whereas Fap2-deficient bacteria are impaired in tumor colonization. Inoculation with F. nucleatum suppresses accumulation of tumor infiltrating T cells and promotes tumor growth and metastatic progression, the latter two of which can be counteracted by antibiotic treatment. Thus, targeting F. nucleatum or Fap2 might be beneficial during treatment of breast cancer.


Assuntos
Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Progressão da Doença , Fusobacterium nucleatum/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/genética , Galactosamina/metabolismo , Galactose/metabolismo , Genoma Bacteriano/genética , Humanos , Imunidade/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA