Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(32): 16062-16067, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337678

RESUMO

The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.


Assuntos
Testes Genéticos/métodos , Sono/genética , Vigília/genética , Animais , Canais de Cálcio Tipo N/genética , Simulação por Computador , Cruzamentos Genéticos , Distúrbios do Sono por Sonolência Excessiva/genética , Etilnitrosoureia , Feminino , Genes Dominantes , Homozigoto , Escore Lod , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Linhagem , Fenótipo , Reprodutibilidade dos Testes
2.
Mol Genet Metab ; 91(1): 69-78, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17336563

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The aims of this study were to establish Chinese hamster ovary (CHO) cells overexpressing recombinant human GALNS (rhGALNS) and to assess pharmacokinetics and tissue distribution of purified enzymes by using MPS IVA knock-out mouse (Galns(-/-)). The CHO-cell derived rhGALNS was purified from the media by a two-step affinity chromatography procedure. The rhGALNS was administered intravenously to 3-month-old Galns(-/-) mice at a single dose of 250U/g of body weight. The treated mice were examined by assaying the GALNS activity at baseline and up to 240min to assess clearance of the enzyme from blood circulation. The mice were sacrificed 4h after infusion of the enzyme to study the enzyme distribution in tissues. The rhGALNS was purified 1317-fold with 71% yield. The enzyme was taken up by Galns(-/-) chondrocytes (150U/mg/15h). The uptake was inhibited by mannose-6-phosphate. The enzyme activity disappeared from circulation with a half-life of 2.9min. After enzyme infusion, the enzyme was taken up and detected in multiple tissues (40.7% of total infused enzymes in liver). Twenty-four hours after a single infusion of the fluorescence-labeled enzymes into MPS IVA mice, biodistribution pattern showed the amount of tagged enzyme retained in bone, bone marrow, liver, spleen, kidney, and heart. In conclusion, we have shown that the phosphorylated rhGALNS is delivered to multiple tissues, including bone, and that it functions bioactively in Galns(-/-) chondrocytes implying a potential enzyme replacement treatment.


Assuntos
Condroitina Sulfatases/farmacocinética , Proteínas Recombinantes/farmacocinética , Animais , Células CHO , Condroitina Sulfatases/genética , Condroitina Sulfatases/isolamento & purificação , Condroitina Sulfatases/metabolismo , Cricetinae , Cricetulus , Modelos Animais de Doenças , Estabilidade Enzimática , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mucopolissacaridose IV/tratamento farmacológico , Mucopolissacaridose IV/enzimologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Tempo , Distribuição Tecidual
3.
Hum Mol Genet ; 14(22): 3321-35, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16219627

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. In recent studies of enzyme replacement therapy for animal models with lysosomal storage diseases, cellular and humoral immune responses to the injected enzymes have been recognized as major impediments to effective treatment. To study the long-term effectiveness and side effects of therapies in the absence of immune responses, we have developed an MPS IVA mouse model, which has many similarities to human MPS IVA and is tolerant to human GALNS protein. We used a construct containing both a transgene (cDNA) expressing inactive human GALNS in intron 1 and an active site mutation (C76S) in adjacent exon 2 and thereby introduced both the inactive cDNA and the C76S mutation into the murine Galns by targeted mutagenesis. Affected homozygous mice have no detectable GALNS enzyme activity and accumulate glycosaminoglycans in multiple tissues including visceral organs, brain, cornea, bone, ligament and bone marrow. At 3 months, lysosomal storage is marked within hepatocytes, reticuloendothelial Kupffer cells, and cells of the sinusoidal lining of the spleen, neurons and meningeal cells. The bone storage is also obvious, with lysosomal distention in osteoblasts and osteocytes lining the cortical bone, in chondrocytes and in the sinus lining cells in bone marrow. Ubiquitous expression of the inactive human GALNS was also confirmed by western blot using the anti-GALNS monoclonal antibodies newly produced, which resulted in tolerance to immune challenge with human enzyme. The newly generated MPS IVA mouse model should provide a good model to evaluate long-term administration of enzyme replacement.


Assuntos
Condroitina Sulfatases/genética , Mucopolissacaridose IV/enzimologia , Mucopolissacaridose IV/genética , Animais , Condroitina Sulfatases/administração & dosagem , Condroitina Sulfatases/biossíntese , Condroitina Sulfatases/deficiência , Condroitina Sulfatases/imunologia , Modelos Animais de Doenças , Feminino , Valvas Cardíacas/patologia , Humanos , Tolerância Imunológica/genética , Fígado/patologia , Masculino , Meninges/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucopolissacaridose IV/patologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA