RESUMO
OBJECTIVE: This study aimed to evaluate the effects of ingested periodontal pathogens on experimental colitis in mice and to elucidate its underlying mechanisms. BACKGROUND: Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results in damage to the gastrointestinal tract. Epidemiological studies have shown an association between IBD and periodontitis. Although a large number of ingested oral bacteria reach gastrointestinal tract constantly, the effect of ingested periodontal pathogens on intestinal inflammation is still unknown. METHODS: Experimental colitis was induced by inclusion of dextran sodium sulfate solution in drinking water of the mice. Major periodontal pathogens (Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum) were administered orally every day during the experiment. The severity of colitis between the groups was compared. In vitro studies of the intestinal epithelial cell line were conducted to explore the molecular mechanisms by which periodontal pathogens affect the development of colitis. RESULTS: The oral administration of P. gingivalis significantly increased the severity of colitis when compared to other pathogens in the DSS-induced colitis model. The ingested P. gingivalis disrupted the colonic epithelial barrier by decreasing the expression of tight junction proteins in vivo. In vitro permeability assays using the intestinal epithelial cell line suggested the P. gingivalis-specific epithelial barrier disruption. The possible involvement of gingipains in the exacerbation of colitis was implied by using P. gingivalis lacking gingipains. CONCLUSION: Porphyromonas gingivalis exacerbates gastrointestinal inflammation by directly interacting with the intestinal epithelial barrier in a susceptible host.
Assuntos
Colite , Porphyromonas gingivalis , Animais , Colite/induzido quimicamente , Colite/complicações , Ingestão de Alimentos , Fusobacterium nucleatum , Camundongos , Camundongos Endogâmicos C57BL , Prevotella intermediaRESUMO
Background: The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Aim: We explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects. Methods: The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Gut microbial communities, hepatic gene expression profiles, and serum metabolites were analyzed. Results: The gut microbial composition was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of lipid and glucose metabolism-related genes. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with characteristic gut microbial taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. Conclusion: The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.
RESUMO
OBJECTIVE: Food-derived bioactive peptides have been reported to exhibit various beneficial effects, including anti-microbial, anti-inflammatory, and anti-oxidant properties. Oxidative stress has been implicated in the development of several inflammatory diseases such as periodontal disease. However, the anti-oxidative effect of food-derived bioactive peptides in gingival epithelial cells (GECs) is unknown. Therefore, we examined the bioactivity of the peptides in GECs. DESIGN: Food-derived peptide fractionations derived from rice bran, rice endosperm, corn, and soy were screened for anti-oxidative effects using anti-oxidant response element (ARE)-luciferase-transfected HEK 293 cells. The induction of anti-oxidation-related genes and proteins in GECs by the fractions were examined by quantitative PCR and Western blotting, respectively. Then, the fraction-mediated anti-oxidative effects were examined by measuring intracellular reactive oxygen species (ROS) levels using flow cytometry. Furthermore, the anti-oxidative response-related cellular signaling pathways were analyzed via Western blotting. RESULTS: Although treatment with the food-derived peptides alone did not activate anti-oxidative responses, co-treatment with sulforaphane (SFN; a potent anti-oxidant) and certain food-derived peptides enhanced anti-oxidative responses in ARE-luciferase-transfected HEK 293 cells. The fractions augmented heme oxygenase-1 mRNA and protein expression in GECs. The percentage of ROS-positive cells was significantly decreased by co-treatment with SFN and peptide fractions derived from rice bran. Furthermore, the involvement of both nuclear factor erythroid 2-related factor 2 (Nrf2) and extracellular signal-regulated kinase (ERK) in the enhancement of anti-oxidative responses was demonstrated by Western blotting. CONCLUSIONS: Peptides derived from rice bran enhances SFN-induced anti-oxidative responses in GECs through ERK-Nrf2-ARE signaling.
Assuntos
Oryza , Antioxidantes/farmacologia , Células Epiteliais/metabolismo , Células HEK293 , Heme Oxigenase-1 , Humanos , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , SulfóxidosRESUMO
Obesity is a risk factor for periodontal disease (PD). Initiation and progression of PD are modulated by complex interactions between oral dysbiosis and host responses. Although obesity is associated with increased susceptibility to bacterial infection, the detailed mechanisms that connect obesity and susceptibility to PD remain elusive. Using fecal microbiota transplantation and a ligature-induced PD model, we demonstrated that gut dysbiosis-associated metabolites from high-fat diet (HFD)-fed mice worsen alveolar bone destruction. Fecal metabolomics revealed elevated purine degradation pathway activity in HFD-fed mice, and recipient mice had elevated levels of serum uric acid upon PD induction. Furthermore, PD induction caused more severe bone destruction in hyperuricemic than normouricemic mice, and the worsened bone destruction was completely abrogated by allopurinol, a xanthine oxidase inhibitor. Thus, obesity increases the risk of PD by increasing production of uric acid mediated by gut dysbiosis. IMPORTANCE Obesity is an epidemic health issue with a rapid increase worldwide. It increases the risk of various diseases, including periodontal disease, an oral chronic infectious disease. Although obesity increases susceptibility to bacterial infection, the precise biological mechanisms that link obesity and susceptibility to periodontal disease remain elusive. Using fecal microbial transplantation, experimental periodontitis, and metabolomics, our study demonstrates uric acid as a causative substance for greater aggravation of alveolar bone destruction in obesity-related periodontal disease. Gut microbiota from obese mice upregulated the purine degradation pathway, and the resulting elevation of serum uric acid promoted alveolar bone destruction. The effect of uric acid was confirmed by administration of allopurinol, an inhibitor of xanthine oxidase. Overall, our study provides new insights into the pathogenic mechanisms of obesity-associated periodontal disease and the development of new therapeutic options for the disease.
Assuntos
Perda do Osso Alveolar/etiologia , Microbioma Gastrointestinal , Obesidade/microbiologia , Periodontite/microbiologia , Ácido Úrico/metabolismo , Perda do Osso Alveolar/patologia , Animais , Dieta Hiperlipídica , Disbiose , Transplante de Microbiota Fecal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Periodontite/etiologia , Fatores de Risco , Ácido Úrico/análiseRESUMO
OBJECTIVE: Rice peptide has antibacterial properties that have been tested in planktonic bacterial culture. However, bacteria form biofilm at disease sites and are resistant to antibacterial agents. The aim of this study was to clarify the mechanisms of action of rice peptide and its amino acid substitution against periodontopathic bacteria and their antibiofilm effects. DESIGN: Porphyromonas gingivalis and Fusobacterium nucleatum were treated with AmyI-1-18 rice peptide or its arginine-substituted analog, G12R, under anaerobic conditions. The amount of biofilm was evaluated by crystal violet staining. The integrity of the bacteria cytoplasmic membrane was studied in a propidium iodide (PI) stain assay and transmission electron microscopy (TEM). RESULTS: Both AmyI-1-18 and G12R inhibited biofilm formation of P. gingivalis and F. nucleatum; in particular, G12R inhibited F. nucleatum at lower concentrations. However, neither peptide eradicated established biofilms significantly. According to the minimum inhibitory concentration and minimum bactericidal concentration against P. gingivalis, AmyI-1-18 has bacteriostatic properties and G12R has bactericidal activity, and both peptides showed bactericidal activity against F. nucleatum. PI staining and TEM analysis indicated that membrane disruption by G12R was enhanced, which suggests that the replacement amino acid reinforced the electostatic interaction between the peptide and bacteria by increase of cationic charge and α-helix content. CONCLUSIONS: Rice peptide inhibited biofilm formation of P. gingivalis and F. nucleatum, and bactericidal activity via membrane destruction was enhanced by amino acid substitution.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Oryza/química , Peptídeos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Substituição de Aminoácidos , Fusobacterium nucleatum/crescimento & desenvolvimento , Proteínas de Plantas/farmacologia , Porphyromonas gingivalis/crescimento & desenvolvimentoRESUMO
Background & Aims: Periodontitis increases the risk of nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms are unclear. Here, we show that gut dysbiosis induced by oral administration of Porphyromonas gingivalis, a representative periodontopathic bacterium, is involved in the aggravation of NAFLD pathology. Methods: C57BL/6N mice were administered either vehicle, P. gingivalis, or Prevotella intermedia, another periodontopathic bacterium with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, l-amino acid-defined, high-fat diet with 60 kcal% fat and 0.1% methionine (CDAHFD60). The gut microbial communities were analyzed by pyrosequencing the 16S ribosomal RNA genes. Metagenomic analysis was used to determine the relative abundance of the Kyoto Encyclopedia of Genes and Genomes pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance-based metabolomics coupled with multivariate statistical analyses. Hepatic gene expression profiles were analyzed via DNA microarray and quantitative polymerase chain reaction. Results: CDAHFD60 feeding induced hepatic steatosis, and in combination with bacterial administration, it further aggravated NAFLD pathology, thereby increasing fibrosis. Gene expression analysis of liver samples revealed that genes involved in NAFLD pathology were perturbed, and the two bacteria induced distinct expression profiles. This might be due to quantitative and qualitative differences in the influx of bacterial products in the gut because the serum endotoxin levels, compositions of the gut microbiota, and serum metabolite profiles induced by the ingested P. intermedia and P. gingivalis were different. Conclusions: Swallowed periodontopathic bacteria aggravate NAFLD pathology, likely due to dysregulation of gene expression by inducing gut dysbiosis and subsequent influx of gut bacteria and/or bacterial products.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/microbiologia , Porphyromonas gingivalis , Prevotella intermedia , Administração Oral , Animais , Deficiência de Colina , Dieta Hiperlipídica , Fezes/microbiologia , Células Hep G2 , Humanos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Ribossômico 16SRESUMO
BACKGROUND: The oral cavity serves as an entrance to the body and is therefore exposed to various exogenous stimuli, including mechanical forces, chemical agents, and bacterial components. The oral mucosa responds to these stimuli to maintain homeostasis and good oral health. The transient receptor potential vanilloid 1 (TRPV1) ion channel functions as an environment-sensing protein and is involved in a wide variety of cellular responses. Recent studies have revealed that epithelial TRPV1 ion channels in the oral cavity play pivotal roles in several pathophysiological conditions. In this review, we summarize the features of epithelial TRPV1 channels in the oral cavity and focus on their cellular function and pathogenicity with reference to related findings in other organs and tissues. HIGHLIGHT: TRPV1 channels are widely expressed in epithelial cells in the oral cavity and play pivotal roles in fundamental cellular processes and disease progression. CONCLUSION: This review suggests that oral epithelial TRPV1 contributes to several cellular functions such as cell proliferation, barrier function, and inflammation. Further understanding of the characteristics of epithelial TRPV1 in the oral cavity may provide new insights into the prevention or treatment of diseases.
Assuntos
Canais de Potencial de Receptor Transitório , Células Epiteliais , Humanos , Mucosa Bucal , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , VirulênciaRESUMO
OBJECTIVE: Oxidative stress, which is defined as an imbalance between pro-oxidant and antioxidant systems, has been implicated in the development and/or progression of several inflammatory diseases, including periodontal disease. The reactive oxygen species (ROS) are the primary inducers of oxidative stress. In the induction of cytoprotective enzymes, the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling in antioxidant systems takes a main role. Notably, 10-oxo-trans-11-octadecenoic acid (KetoC), known as a bioactive metabolite generated by intestinal microorganisms, has been reported to have beneficial effects on several biological responses. Therefore, we investigated the antioxidant effect of KetoC on gingival epithelial cells (GECs) in this present study. METHODS: An SV40-T antigen-transformed human gingival epithelial cell line (Epi4) was used for experiments. The alteration of anti-oxidative stress related genes was analyzed by qPCR. The cellular ROS levels were evaluated by flow cytometry. To explore its molecular mechanisms, ARE promotor activity was analyzed by luciferase assay; the involvement of mitogen-activated protein kinase (MAPK) and G protein-coupled receptor 120 (GPR120) were evaluated by Western blotting and luciferase assay, respectively. RESULTS: KetoC significantly increased the expression of antioxidant-related genes in GECs. The level of ROS was significantly inhibited by the pretreatment of KetoC. Extracellular signal-regulated kinase (ERK) phosphorylation by KetoC promoted both the nuclear translocation of Nrf2 and its binding to the ARE in GECs. Further, GPR120 regulated the activation of KetoC induced-Nrf2-ARE signaling. CONCLUSION: KetoC exerts a protective function against the oxidative stress in GECs through GPR120-dependent ERK-Nrf2-ARE signaling.
Assuntos
Elementos de Resposta Antioxidante , Gengiva , Ácidos Linoleicos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Antioxidantes , Células Epiteliais , Gengiva/citologia , Gengiva/metabolismo , Humanos , Ácidos Linoleicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Espécies Reativas de OxigênioRESUMO
The gingival epithelium acts as a physical barrier to separate the biofilm from the gingival tissue, providing the first line of defense against bacterial invasion in periodontal disease. Disruption of the gingival epithelial barrier, and the subsequent penetration of exogenous pathogens into the host tissues, triggers an inflammatory response, establishing chronic infection. Currently, more than 700 different bacterial species have been identified in the oral cavity, some of which are known to be periodontopathic. These bacteria contribute to epithelial barrier dysfunction in the gingiva by producing several virulence factors. However, some bacteria in the oral cavity appear to be beneficial, helping gingival epithelial cells maintain their integrity and barrier function. This review aims to discuss current findings regarding microorganism interactions and epithelial barrier function in the oral cavity, with reference to investigations in the gut, where this interaction has been extensively studied.
Assuntos
Células Epiteliais/metabolismo , Epitélio/fisiopatologia , Gengiva/patologia , Doenças Periodontais/fisiopatologia , Junções Íntimas/metabolismo , Células Cultivadas , HumanosRESUMO
OBJECTIVES: Several serum biomarkers have been reported to increase in periodontitis patients as possible mediators linking periodontal inflammation to systemic diseases. However, the relationship between periodontitis and urine biomarkers is still unclear. The aim of this cross-sectional study was to investigate potential urine biomarkers of periodontitis in a Japanese population. MATERIALS AND METHODS: This study included 108 male subjects, and microbiological and clinical parameters were evaluated as a periodontitis marker. The correlation between nine urine biomarkers (typically used to diagnose kidney disease) and periodontal parameters was analyzed. Based on the findings, ß 2-microglobulin (ß 2-MG) and neutrophil gelatinase-associated lipocalin (NGAL) were selected for comparison and multivariate regression analysis, and the Kruskal-Wallis test followed by Bonferroni correction was used to identify differences in their concentrations between the three periodontitis groups (severe, moderate, and no/mild periodontitis). RESULTS: ß 2-MG and NGAL exhibited a significant correlation with clinical parameters of periodontitis. The prevalence of clinical parameters such as bleeding on probing and number of sites with probing depth (PD) ≥ 6 mm were greater in the ß 2-MG high group (≥300 µg/g creatinine) than in the normal group (P=0.017 and 0.019, respectively). Multivariate regression analysis indicated that the number of sites with PD ≥ 6 mm was independently associated with urine ß 2-MG. Moreover, the number of sites with the clinical attachment level (CAL) ≥ 6 mm was greater in the NGAL high group (highest quartile) (P=0.041). Multivariate regression analysis showed that the number of sites with CAL ≥ 6 mm was associated independently with urine NGAL. Finally, ß 2-MG was significantly higher in the severe periodontitis subjects compared to the no/mild periodontitis subjects. CONCLUSION: The significant association between urine ß 2-MG or NGAL and periodontitis was revealed. These biomarkers can potentially be used to screen for or diagnose periodontitis. This trial is registered with the UMIN Clinical Trials Registry UMIN000013485.
RESUMO
BACKGROUND: The bioactive metabolite KetoC, generated by intestinal bacteria, exerts various beneficial effects. Nevertheless, its function in the pathogenesis of periodontitis remains unclear. Here, we investigated the effect of KetoC in a mouse model of periodontitis and explored the underlying mechanism. METHODS: Thirty-one 8-week-old male C57BL/6N mice were randomly divided into four groups (non-ligation, non-ligation + KetoC, ligation + Porphyromonas gingivalis, and ligation + P. gingivalis + KetoC) (n = 7/8 mice/group) and given a daily oral gavage of KetoC (15 mg/mL) or vehicle for 2 weeks. To induce periodontitis, a 5-0 silk ligature was placed on the maxillary left second molar on day 7, and P. gingivalis W83 (109 colony-forming unit [CFU]) was administered orally every 3 days. On day 14, all mice were euthanized. Alveolar bone destruction was determined from the level of the cemento-enamel junction to the alveolar bone crest. Moreover, bone loss level was confirmed from gingival tissue sections stained with hematoxylin and eosin. The presence of P. gingivalis was quantified using real-time polymerase chain reaction. In vitro, the bacteriostatic and bactericidal effects of KetoC were assessed by analyzing its suppressive activity on the proliferation of P. gingivalis and using a live/dead bacterial staining kit, respectively. A double-bond-deficient metabolite (KetoB) was then used to investigate the importance of double-bond structure in the antimicrobial activity of KetoC on P. gingivalis. RESULTS: In vivo, KetoC attenuated alveolar bone destruction and suppressed P. gingivalis in the periodontitis group. In vitro, KetoC (but not KetoB) downregulated the proliferation and viability of P. gingivalis in a dose-dependent manner. CONCLUSIONS: KetoC reduced alveolar bone destruction in a periodontitis model via its antimicrobial function. Therefore, this bioactive metabolite may be valuable in clinical applications to support periodontal therapy.