Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 290(15): 9588-603, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25720491

RESUMO

Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Humanos , Lisossomos/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Interferência de RNA , Tiossemicarbazonas/metabolismo , Vimblastina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Biol Chem ; 288(44): 31761-71, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24062304

RESUMO

Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/genética , Lisossomos/genética , Proteínas de Neoplasias/genética
3.
Blood ; 115(17): 3580-8, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20190191

RESUMO

T cells contribute to host-tumor interactions in patients with monoclonal gammopathies. Expansions of CD8(+)CD57(+) T-cell receptor Vbeta-positive (TCRVbeta(+))-restricted cytotoxic T-cell (CTL) clones are found in 48% of patients with multiple myeloma and confer a favorable prognosis. We now report that CTL clones with varying TCRVbeta repertoire are present in 70% of patients with Waldenström macroglobulinemia (WM; n = 20). Previous nucleoside analog (NA) therapy, associated with increased incidence of transformation to aggressive lymphoma, significantly influenced the presence of TCRVbeta expansions (chi(2) = 11.6; P < .001), as 83% of patients without (n = 6) and only 7% with (n = 14) TCRVbeta expansions had received NA. Clonality of CD3(+)CD8(+)CD57(+)TCRVbeta(+)-restricted CTLs was confirmed by TCRVbeta CDR3 size analysis and direct sequencing. The differential expression of CD3(+)CD8(+)CD57(+)TCRVbeta(+) cells was profiled using DNA microarrays and validated at mRNA and protein level. By gene set enrichment analysis, CTL clones expressed not only genes from cytotoxic pathways (GZMB, PRF1, FGFBP2) but also genes that suppress apoptosis, inhibit proliferation, arrest cell-cycle G1/S transition, and activate T cells (RAS, CSK, and TOB pathways). Proliferation tracking after stimulation confirmed their anergic state. Our studies demonstrate the incidence, NA sensitivity, and nature of clonal CTLs in WM and highlight mechanisms that cause anergy in these cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Anergia Clonal , Nucleosídeos/uso terapêutico , Macroglobulinemia de Waldenstrom/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/biossíntese , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Neoplásico/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/imunologia
4.
Am J Hematol ; 84(3): 170-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19140186

RESUMO

Iron chelators have been reported to induce apoptosis and cell cycle arrest in cancer cells. Recent studies suggest broad and selective antitumor activity of the new iron chelator, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT; Whitnall et al., Proc Natl Acad Sci USA 2006;103:14901-14906). However, little is known concerning its effects on hematological malignancies. Using acute leukemia cells, the effect of Dp44mT on apoptosis, cell cycle, caspase-3 activation, and mitochondrial trans-membrane potential has been examined by flow cytometry. Dp44mT acted to induce a G(1)/S arrest in NB4 promyelocytic leukemia cells at low concentrations (0.5-2.5 microM), being far more effective than the clinically used chelator, desferrioxamine (DFO). Moreover, Dp44mT induced apoptosis of NB4 cells in a dose- and time-dependent manner with markedly less effect on nonproliferating cells. The apoptosis-inducing activity of Dp44mT was significantly more effective than DFO. Furthermore, this study also showed that Dp44mT had broad activity, inducing apoptosis in several types of acute leukemia and also multiple myeloma cell lines. Additional studies examining the cytotoxic mechanisms of Dp44mT showed that a reduction in the mitochondrial trans-membrane potential and caspase-3 activation could be involved in the mechanism of apoptosis. Our results suggest that Dp44mT possesses potential as an effective cytotoxic agent for the chemotherapeutic treatment of acute leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Tiossemicarbazonas/farmacologia , Ciclo Celular/efeitos dos fármacos , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA