RESUMO
For understanding the evolutionary mechanism of sexually selected exaggerated traits, it is essential to uncover its molecular basis. By using broad-horned flour beetle that has male-specific exaggerated structures (mandibular horn, head horn and gena enlargement), we investigated the transcriptomic and functional characters of sex-biased genes. Comparative transcriptome of male vs. female prepupal heads elucidated 673 sex-biased genes. Counter-intuitively, majority of them were female-biased (584 genes), and GO enrichment analysis showed cell-adhesion molecules were frequently female-biased. This pattern motivated us to hypothesize that female-biased transcripts (i.e. the transcripts diminished in males) may play a role in outgrowth formation. Potentially, female-biased genes may act as suppressors of weapon structure. In order to test the functionality of female-biased genes, we performed RNAi-mediated functional screening for top 20 female-biased genes and 3 genes in the most enriched GO term (cell-cell adhesion, fat1/2/3, fat4 and dachsous). Knockdown of one transcription factor, zinc finger protein 608 (zfp608) resulted in the formation of male-like gena in females, supporting the outgrowth suppression function of this gene. Similarly, knockdown of fat4 induced rudimental, abnormal mandibular horn in female. fat1/2/3RNAi, fat4RNAi and dachsousRNAi males exhibited thick and/or short mandibular horns and legs. These cell adhesion molecules are known to regulate tissue growth direction and known to be involved in the weapon formation in Scarabaeoidea beetles. Functional evidence in phylogenetically distant broad-horned flour beetle suggest that cell adhesion genes are repeatedly deployed in the acquisition of outgrowth. In conclusion, this study clarified the overlooked functions of female-biased genes in weapon development.
Assuntos
Besouros , Animais , Feminino , Masculino , Besouros/genética , Transcriptoma/genética , Evolução Biológica , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Moléculas de Adesão Celular/genética , Caracteres SexuaisRESUMO
An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidiletanolaminas/metabolismo , Estômatos de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Luz , ATPases Translocadoras de Prótons/metabolismoRESUMO
Fem is a W-linked gene that encodes a piRNA precursor, and its product, Fem piRNA, is a master factor of female determination in Bombyx mori. Fem has low similarity to any known sequences, and the origin of Fem remains unclear. So far, two hypotheses have been proposed for the origin of Fem: The first hypothesis is that Fem is an allele of Masc, which assumes that the W chromosome was originally a homologous chromosome of the Z chromosome. The second hypothesis is that Fem arose by the transposition of Masc to the W chromosome. To explore the origin of Fem, we determined the W chromosome sequences of B. mori and, as a comparison, a closely relative bombycid species of Trilocha varians with a Fem-independent sex determination system. To our surprise, although the sequences of W and Z chromosomes show no homology to each other, a few pairs of homologues are shared by W and Z chromosomes, indicating the W chromosome of both species originated from Z chromosome. In addition, the W chromosome of T. varians lacks Fem, while the W chromosome of B. mori has over 100 copies of Fem. The high-quality assembly of the W chromosome of B. mori arose the third hypothesis about the origin of Fem: Fem is a chimeric sequence of multiple transposons. More than half of one transcriptional unit of Fem shows a significant homology to RTE-BovB. Moreover, the Fem piRNA-producing region could correspond to the boundary of the two transposons, gypsy and satellite DNA.
Assuntos
Bombyx , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Feminino , Bombyx/genética , Mariposas/genética , RNA Interferente Pequeno/genética , Evolução Molecular , Cromossomos de Insetos/genética , Análise de Sequência de DNA , Filogenia , Processos de Determinação Sexual/genética , MasculinoRESUMO
Host plant-derived strigolactones trigger hyphal branching in arbuscular mycorrhizal (AM) fungi, initiating a symbiotic interaction between land plants and AM fungi. However, our previous studies revealed that gibberellin-treated lisianthus (Eustoma grandiflorum, Gentianaceae) activates rhizospheric hyphal branching in AM fungi using unidentified molecules other than strigolactones. In this study, we analyzed independent transcriptomic data of E. grandiflorum and found that the biosynthesis of gentiopicroside (GPS) and swertiamarin (SWM), characteristic monoterpene glucosides in Gentianaceae, was upregulated in gibberellin-treated E. grandiflorum roots. Moreover, these metabolites considerably promoted hyphal branching in the Glomeraceae AM fungi Rhizophagus irregularis and Rhizophagus clarus. GPS treatment also enhanced R. irregularis colonization of the monocotyledonous crop chive (Allium schoenoprasum). Interestingly, these metabolites did not provoke the germination of the root parasitic plant common broomrape (Orobanche minor). Altogether, our study unveiled the role of GPS and SWM in activating the symbiotic relationship between AM fungi and E. grandiflorum.
Assuntos
Liliaceae , Micorrizas , Orobanche , Micorrizas/fisiologia , Giberelinas/metabolismo , Glucosídeos/metabolismo , Raízes de Plantas/metabolismo , Fungos , Hifas , Simbiose/fisiologia , PlantasRESUMO
Orchids parasitically depend on external nutrients from mycorrhizal fungi for seed germination. Previous findings suggest that orchids utilize a genetic system of mutualistic arbuscular mycorrhizal (AM) symbiosis, in which the plant hormone gibberellin (GA) negatively affects fungal colonization and development, to establish parasitic symbiosis. Although GA generally promotes seed germination in photosynthetic plants, previous studies have reported low sensitivity of GA in seed germination of mycoheterotrophic orchids where mycorrhizal symbiosis occurs concurrently. To elucidate the connecting mechanisms of orchid seed germination and mycorrhizal symbiosis at the molecular level, we investigated the effect of GA on a hyacinth orchid (Bletilla striata) seed germination and mycorrhizal symbiosis using asymbiotic and symbiotic germination methods. Additionally, we compared the transcriptome profiles between asymbiotically and symbiotically germinated seeds. Exogenous GA negatively affected seed germination and fungal colonization, and endogenous bioactive GA was actively converted to the inactive form during seed germination. Transcriptome analysis showed that B. striata shared many of the induced genes between asymbiotically and symbiotically germinated seeds, including GA metabolism- and signaling-related genes and AM-specific marker homologs. Our study suggests that orchids have evolved in a manner that they do not use bioactive GA as a positive regulator of seed germination and instead autoactivate the mycorrhizal symbiosis pathway through GA inactivation to accept the fungal partner immediately during seed germination.
Assuntos
Micorrizas , Orchidaceae , Simbiose/genética , Micorrizas/fisiologia , Germinação/genética , Giberelinas , Sementes/genética , Orchidaceae/genéticaRESUMO
Crops that exhibit symptoms of calcium (Ca) deficiency constitute a major agricultural problem. Molecular breeding of resistant cultivars is a promising method for overcoming this problem. However, the involved genes must first be identified. Here, we show that the glucan synthase-like (GSL) 1 gene is essential for low-Ca tolerance in Arabidopsis thaliana. GSL1 is homologous to GSL10, which we previously showed was essential for low-Ca tolerance. Under low-Ca conditions, gsl1 mutants exhibit reduced growth and the onset of necrosis in new leaves. These symptoms are typical of Ca-deficient crops. A grafting experiment suggested that the shoot genotype, but not the root genotype, was important for the suppression of shoot necrosis. The ectopic accumulation of callose under low-Ca conditions was significantly reduced in gsl1 mutants compared with wild-type plants. Because the corresponding single-mutant phenotypes are similar, we investigated the interaction between GSL1 and GSL10 by testing the gsl1 gsl10 double mutant for sensitivity to low-Ca conditions. The double mutant exhibited a more severe phenotype than did the single mutants, indicating that the effects of GSL1 and GSL10 on low-Ca tolerance are additive. Because GSL genes are highly conserved within the plant kingdom, the GSL loci may be useful for breeding low-Ca tolerant crops.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Melhoramento Vegetal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Necrose , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genéticaRESUMO
Regeneration in land plants is accompanied by the establishment of new stem cells, which often involves reactivation of the cell division potential in differentiated cells. The phytohormone auxin plays pivotal roles in this process. In bryophytes, regeneration is enhanced by the removal of the apex and repressed by exogenously applied auxin, which has long been proposed as a form of apical dominance. However, the molecular basis behind these observations remains unexplored. Here, we demonstrate that in the liverwort Marchantia polymorpha, the level of endogenous auxin is transiently decreased in the cut surface of decapitated explants, and identify by transcriptome analysis a key transcription factor gene, LOW-AUXIN RESPONSIVE (MpLAXR), which is induced upon auxin reduction. Loss of MpLAXR function resulted in delayed cell cycle reactivation, and transient expression of MpLAXR was sufficient to overcome the inhibition of regeneration by exogenously applied auxin. Furthermore, ectopic expression of MpLAXR caused cell proliferation in normally quiescent tissues. Together, these data indicate that decapitation causes a reduction of auxin level at the cut surface, where, in response, MpLAXR is up-regulated to trigger cellular reprogramming. MpLAXR is an ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION 1/DORNRÖSCHEN, which has dual functions as a shoot regeneration factor and a regulator of axillary meristem initiation, the latter of which requires a low auxin level. Thus, our findings provide insights into stem cell regulation as well as apical dominance establishment in land plants.
Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Reprogramação Celular/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Marchantia/genética , Marchantia/metabolismoRESUMO
Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon, and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific differences. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, whereas the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, and epigenetic modifications were linked to spatial expression differences conserved across species.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Idoso , Animais , Feminino , Hominidae , Humanos , Macaca , Masculino , Pessoa de Meia-IdadeRESUMO
Mg2+ is among the most abundant divalent cations in living cells. In plants, investigations on magnesium (Mg) homeostasis are restricted to the functional characterization of Mg2+ transporters. Here, we demonstrate that the splicing factors SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1) and SMU2 mediate Mg homeostasis in Arabidopsis (Arabidopsis thaliana). A low-Mg sensitive Arabidopsis mutant was isolated, and the causal gene was identified as SMU1 Disruption of SMU2, a protein that can form a complex with SMU1, resulted in a similar low-Mg sensitive phenotype. In both mutants, an Mg2+ transporter gene, Mitochondrial RNA Splicing 2 (MRS2-7), showed altered splicing patterns. Genetic evidence indicated that MRS2-7 functions in the same pathway as SMU1 and SMU2 for low-Mg adaptation. In contrast with previous results showing that the SMU1-SMU2 complex is the active form in RNA splicing, MRS2-7 splicing was promoted in the smu2 mutant overexpressing SMU1, indicating that complex formation is not a prerequisite for the splicing. We found here that formation of the SMU1-SMU2 complex is an essential step for their compartmentation in the nuclear speckles, a type of nuclear body enriched with proteins that participate in various aspects of RNA metabolism. Taken together, our study reveals the involvement of the SMU splicing factors in plant Mg homeostasis and provides evidence that complex formation is required for their intranuclear compartmentation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Magnésio/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologiaRESUMO
Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis (Arabidopsis thaliana) under low-Ca conditions. A mutant sensitive to low-Ca conditions, low calcium sensitive3 (lcs3), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions. Further analyses showed that the causal mutation was located in a putative ß-1,3-glucan (callose) synthase gene, GLUCAN SYNTHASE-LIKE10 (GSL10). Yeast complementation assay results showed that GSL10 encodes a functional callose synthase. Ectopic callose significantly accumulated in wild-type plants under low-Ca conditions, but at a low level in lcs3 The low-Ca sensitivity of lcs3 was phenocopied by the application of callose synthase inhibitors in wild-type plants, which resulted in leaf expansion failure, cell death, and reduced ectopic callose levels under low-Ca conditions. Transcriptome analyses showed that the expression of genes related to cell wall and defense responses was altered in both wild-type plants under low-Ca conditions and in lcs3 under normal-Ca conditions, suggesting that GSL10 is required for the alleviation of both cell wall damage and defense responses caused by low Ca levels. These results suggest that callose synthesis is essential for the prevention of cell death under low-Ca conditions and plays a key role in plants' survival strategies under low-Ca conditions.
Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Glucanos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismoRESUMO
Symbiotic associations with beneficial microorganisms endow a variety of host animals with adaptability to the environment. Stable transmission of symbionts across host generations is a key event in the maintenance of symbiotic associations through evolutionary time. However, our understanding of the mechanisms of symbiont transmission remains fragmentary. The deep-sea clam Phreagena okutanii harbors chemoautotrophic intracellular symbiotic bacteria in gill epithelial cells, and depends on these symbionts for nutrition. In this study, we focused on the association of these maternally transmitted symbionts with ovarian germ cells in juvenile female clams. First, we established a sex identification method for small P. okutanii individuals, and morphologically classified female germ cells observed in the ovary. Then, we investigated the association of the endosymbiotic bacteria with germ cells. We found that the symbionts were localized on the outer surface of the cell membrane of primary oocytes and not within the cluster of oogonia. Based on our findings, we discuss the processes and mechanisms of symbiont vertical transmission in P. okutanii.
Assuntos
Bactérias/classificação , Bivalves/microbiologia , Simbiose/fisiologia , Animais , Feminino , Brânquias/microbiologia , Oócitos/microbiologiaRESUMO
Nax is a brain [Na+] sensor expressed in the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT) in the brain. We previously demonstrated that Nax signals are involved in the control of water intake behavior through the Nax/TRPV4 pathway. Nax gene knockout mice showed significantly attenuated water intake after an intracerebroventricular (ICV) injection of a hypertonic NaCl solution; however, the induction of a certain amount of water intake still remained, suggesting that another unknown [Na+]-dependent pathway besides the Nax/TRPV4 pathway contributes to water intake. In the present study, we screened for novel [Na+] sensors involved in water intake control and identified SLC9A4 (also called sodium (Na+)/hydrogen (H+) exchanger 4 (NHE4)). SLC9A4 is expressed in angiotensin II (Ang II) receptor type 1a (AT1a)-positive neurons in the OVLT. Sodium-imaging experiments using cultured cells transfected with slc9a4 revealed that SLC9A4 was activated by increases in extracellular [Na+] ([Na+]o), but not osmolality. Moreover, the firing activity of SLC9A4-positive neurons was enhanced by increases in [Na+]o and Ang II. slc9a4 knockdown in the OVLT reduced water intake induced by increases in [Na+], but not osmolality, in the cerebrospinal fluid. ICV injection experiments of a specific inhibitor suggested that the increase in extracellular [H+] caused by SLC9A4 activation next stimulates acid-sensing channel 1a (AS1C1a) to induce water intake. Our results thus indicate that SLC9A4 in the OVLT functions as a [Na+] sensor for the control of water intake and that the SLC9A4 signal is independent of the Nax/TRPV4 pathway.
Assuntos
Ingestão de Líquidos , Organum Vasculosum/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Organum Vasculosum/citologia , Organum Vasculosum/fisiologia , Trocadores de Sódio-Hidrogênio/genéticaRESUMO
To obtain insight into the transcription factor (TF)-dependent regulation of epiblast stem cells (EpiSCs), we performed ChIP-seq analysis of the genomic binding regions of five major TFs. Analysis of in vivo biotinylated ZIC2, OTX2, SOX2, POU5F1 and POU3F1 binding in EpiSCs identified several new features. (1) Megabase-scale genomic domains rich in ZIC2 peaks and genes alternate with those rich in POU3F1 but sparse in genes, reflecting the clustering of regulatory regions that act at short and long-range, which involve binding of ZIC2 and POU3F1, respectively. (2) The enhancers bound by ZIC2 and OTX2 prominently regulate TF genes in EpiSCs. (3) The binding sites for SOX2 and POU5F1 in mouse embryonic stem cells (ESCs) and EpiSCs are divergent, reflecting the shift in the major acting TFs from SOX2/POU5F1 in ESCs to OTX2/ZIC2 in EpiSCs. (4) This shift in the major acting TFs appears to be primed by binding of ZIC2 in ESCs at relevant genomic positions that later function as enhancers following the disengagement of SOX2/POU5F1 from major regulatory functions and subsequent binding by OTX2. These new insights into EpiSC gene regulatory networks gained from this study are highly relevant to early stage embryogenesis.
Assuntos
Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camadas Germinativas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Biotinilação , Genoma , Camadas Germinativas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição Otx/metabolismo , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genéticaRESUMO
Sterols are important lipid constituents of cellular membranes in plants and other organisms. Sterol homeostasis is under strict regulation in plants because excess sterols negatively impact plant growth. HIGH STEROL ESTER 1 (HISE1) functions as a negative regulator of sterol accumulation. If sterol production exceeds a certain threshold, excess sterols are detoxified via conversion to sterol esters by PHOSPHOLIPID STEROL ACYL TRANSFERASE 1 (PSAT1). We previously reported that the Arabidopsis thaliana double mutant hise1-3 psat1-2 shows 1.5-fold higher sterol content than the wild type and consequently a severe growth defect. However, the specific defects caused by excess sterol accumulation in plants remain unknown. In this study, we investigated the effects of excess sterols on plants by analyzing the phenotypes and transcriptomes of the hise1-3 psat1-2 double mutant. Transcriptomic analysis revealed that 435 genes were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Gene ontology (GO) enrichment analysis revealed that abiotic and biotic stress-responsive genes including RESPONSIVE TO DESICCATION 29B/LOW-TEMPERATURE-INDUCED 65 (RD29B/LTI65) and COLD-REGULATED 15A (COR15A) were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Expression levels of senescence-related genes were also much higher in hise1-3 psat1-2 leaves than in wild-type leaves. hise1-3 psat1-2 leaves showed early senescence, suggesting that excess sterols induce senescence of leaves. In the absence of sucrose, hise1-3 psat1-2 exhibited defects in seedling growth and root elongation. Together, our data suggest that excess sterol accumulation disrupts cellular activities of vegetative organs including leaves and roots, resulting in multiple damages to plants.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Esteróis/metabolismo , Arabidopsis/genética , MutaçãoRESUMO
The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign.
Assuntos
Carotenoides/fisiologia , Movimento Celular/fisiologia , Chlamydomonas reinhardtii/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Fototaxia/fisiologia , Animais , Carotenoides/efeitos da radiação , Movimento Celular/efeitos da radiação , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Pigmentação/fisiologia , Pigmentação/efeitos da radiação , Doses de RadiaçãoRESUMO
Achlorophylous and early developmental stages of chorolophylous orchids are highly dependent on carbon and other nutrients provided by mycorrhizal fungi, in a nutritional mode termed mycoheterotrophy. Previous findings have implied that some common properties at least partially underlie the mycorrhizal symbioses of mycoheterotrophic orchids and that of autotrophic arbuscular mycorrhizal (AM) plants; however, information about the molecular mechanisms of the relationship between orchids and their mycorrhizal fungi is limited. In this study, we characterized the molecular basis of an orchid-mycorrhizal (OM) symbiosis by analyzing the transcriptome of Bletilla striata at an early developmental stage associated with the mycorrhizal fungus Tulasnella sp. The essential components required for the establishment of mutual symbioses with AM fungi or rhizobia in most terrestrial plants were identified from the B. striata gene set. A cross-species gene complementation analysis showed one of the component genes, calcium and calmodulin-dependent protein kinase gene CCaMK in B. striata, retains functional characteristics of that in AM plants. The expression analysis revealed the activation of homologs of AM-related genes during the OM symbiosis. Our results suggest that orchids possess, at least partly, the molecular mechanisms common to AM plants.
Assuntos
Basidiomycota/fisiologia , Micorrizas/fisiologia , Orchidaceae/fisiologia , Simbiose/fisiologia , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma Fúngico , Germinação/fisiologia , Filogenia , Desenvolvimento Vegetal , RNA de Plantas/genética , TranscriptomaRESUMO
BACKGROUND: Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy. RESULTS: In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi. CONCLUSIONS: In this study, we found several new genes that are absent from the genomes of AM fungi in addition to the genes previously identified as missing. Missing genes for enzymes in primary metabolic pathways imply that AM fungi may have a higher dependency on host plants than other biotrophic fungi. These missing metabolic pathways provide a genetic basis to explore the physiological characteristics and auxotrophy of AM fungi.
Assuntos
Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Genoma Fúngico , Glomeromycota/genética , Micorrizas/genética , Raízes de Plantas/microbiologia , Biologia Computacional , DNA Fúngico/genética , Daucus carota/microbiologia , Glomeromycota/classificação , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , SimbioseRESUMO
The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Divisão Celular Assimétrica/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Meristema/citologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular Assimétrica/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Clonagem Molecular , Ciclinas/metabolismo , Perfilação da Expressão Gênica , Microscopia Confocal , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genéticaRESUMO
Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis.
Assuntos
Asparagus/genética , Proteínas de Plantas/genética , Processos de Determinação Sexual , Fatores de Transcrição/genética , Arabidopsis/genética , Asparagus/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossínteseRESUMO
Our previous study identified approximately 6,000 abiotic stress-responsive noncoding transcripts existing on the antisense strand of protein-coding genes and implied that a type of antisense RNA was synthesized from a sense RNA template by RNA-dependent RNA polymerase (RDR). Expression analyses revealed that the expression of novel abiotic stress-induced antisense RNA on 1,136 gene loci was reduced in the rdr1/2/6 mutants. RNase protection indicated that the RD29A antisense RNA and other RDR1/2/6-dependent antisense RNAs are involved in the formation of dsRNA. The accumulation of stress-inducible antisense RNA was decreased and increased in dcp5 and xrn4, respectively, but not changed in dcl2/3/4, nrpd1a and nrpd1b RNA-seq analyses revealed that the majority of the RDR1/2/6-dependent antisense RNA loci did not overlap with RDR1/2/6-dependent 20-30 nt RNA loci. Additionally, rdr1/2/6 mutants decreased the degradation rate of the sense RNA and exhibited arrested root growth during the recovery stage following a drought stress, whereas dcl2/3/4 mutants did not. Collectively, these results indicate that RDRs have stress-inducible antisense RNA synthesis activity and a novel biological function that is different from the known endogenous small RNA pathways from protein-coding genes. These data reveal a novel mechanism of RNA regulation during abiotic stress response that involves complex RNA degradation pathways.