Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 101(5): 1221-1233, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31654577

RESUMO

Sesame (Sesamum indicum) seeds contain a large number of lignans, phenylpropanoid-related plant specialized metabolites. (+)-Sesamin and (+)-sesamolin are major hydrophobic lignans, whereas (+)-sesaminol primarily accumulates as a water-soluble sesaminol triglucoside (STG) with a sugar chain branched via ß1→2 and ß1→6-O-glucosidic linkages [i.e. (+)-sesaminol 2-O-ß-d-glucosyl-(1→2)-O-ß-d-glucoside-(1→6)-O-ß-d-glucoside]. We previously reported that the 2-O-glucosylation of (+)-sesaminol aglycon and ß1→6-O-glucosylation of (+)-sesaminol 2-O-ß-d-glucoside (SMG) are mediated by UDP-sugar-dependent glucosyltransferases (UGT), UGT71A9 and UGT94D1, respectively. Here we identified a distinct UGT, UGT94AG1, that specifically catalyzes the ß1→2-O-glucosylation of SMG and (+)-sesaminol 2-O-ß-d-glucosyl-(1→6)-O-ß-d-glucoside [termed SDG(ß1→6)]. UGT94AG1 was phylogenetically related to glycoside-specific glycosyltransferases (GGTs) and co-ordinately expressed with UGT71A9 and UGT94D1 in the seeds. The role of UGT94AG1 in STG biosynthesis was further confirmed by identification of a STG-deficient sesame mutant that predominantly accumulates SDG(ß1→6) due to a destructive insertion in the coding sequence of UGT94AG1. We also identified UGT94AA2 as an alternative UGT potentially involved in sugar-sugar ß1→6-O-glucosylation, in addition to UGT94D1, during STG biosynthesis. Yeast two-hybrid assays showed that UGT71A9, UGT94AG1, and UGT94AA2 were found to interact with a membrane-associated P450 enzyme, CYP81Q1 (piperitol/sesamin synthase), suggesting that these UGTs are components of a membrane-bound metabolon for STG biosynthesis. A comparison of kinetic parameters of these UGTs further suggested that the main ß-O-glucosylation sequence of STG biosynthesis is ß1→2-O-glucosylation of SMG by UGT94AG1 followed by UGT94AA2-mediated ß1→6-O-glucosylation. These findings together establish the complete biosynthetic pathway of STG and shed light on the evolvability of regio-selectivity of sequential glucosylations catalyzed by GGTs.


Assuntos
Vias Biossintéticas , Glucosídeos/metabolismo , Glicosiltransferases/metabolismo , Lignanas/metabolismo , Sesamum/enzimologia , Catálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxóis/metabolismo , Furanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética , Sesamum/química , Sesamum/genética
2.
PLoS One ; 8(4): e60538, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593237

RESUMO

The triglucoside of sesaminol, i.e., 2,6-O-di(ß-D-glucopyranosyl)-ß-D- glucopyranosylsesaminol (STG), occurs abundantly in sesame seeds and sesame oil cake and serves as an inexpensive source for the industrial production of sesaminol, an anti-oxidant that displays a number of bioactivities beneficial to human health. However, STG has been shown to be highly resistant to the action of ß-glucosidases, in part due to its branched-chain glycon structure, and these circumstances hampered the efficient utilization of STG. We found that a strain (KB0549) of the genus Paenibacillus produced a novel enzyme capable of efficiently hydrolyzing STG. This enzyme, termed PSTG, was a tetrameric protein consisting of identical subunits with an approximate molecular mass of 80 kDa. The PSTG gene was cloned on the basis of the partial amino acid sequences of the purified enzyme. Sequence comparison showed that the enzyme belonged to the glycoside hydrolase family 3, with significant similarities to the Paenibacillus glucocerebrosidase (63% identity) and to Bgl3B of Thermotoga neapolitana (37% identity). The recombinant enzyme (rPSTG) was highly specific for ß-glucosidic linkage, and k cat and k cat/K m values for the rPSTG-catalyzed hydrolysis of p-nitrophenyl-ß-glucopyraniside at 37°C and pH 6.5 were 44 s(-1) and 426 s(-1) mM(-1), respectively. The specificity analyses also revealed that the enzyme acted more efficiently on sophorose than on cellobiose and gentiobiose. Thus, rPSTG is the first example of a ß-glucosidase with higher reactivity for ß-1,2-glucosidic linkage than for ß-1,4- and ß-1,6-glucosidic linkages, as far as could be ascertained. This unique specificity is, at least in part, responsible for the enzyme's ability to efficiently decompose STG.


Assuntos
Glucosídeos/metabolismo , Glucuronidase/isolamento & purificação , Paenibacillus/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Glucuronidase/química , Glucuronidase/genética , Hidrólise , Dados de Sequência Molecular , Paenibacillus/genética , Filogenia , RNA Ribossômico 16S/genética , Homologia de Sequência de Aminoácidos
3.
Nat Prod Commun ; 5(12): 1903-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21299117

RESUMO

Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.


Assuntos
Dianthus/química , Quempferóis/análise , Cor , Flores/química
4.
J Biol Chem ; 280(2): 899-906, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15509561

RESUMO

In contrast to the wealth of biochemical and genetic information on vertebrate glucuronosyltransferases (UGATs), only limited information is available on the role and phylogenetics of plant UGATs. Here we report on the purification, characterization, and cDNA cloning of a novel UGAT involved in the biosynthesis of flower pigments in the red daisy (Bellis perennis). The purified enzyme, BpUGAT, was a soluble monomeric enzyme with a molecular mass of 54 kDa and catalyzed the regiospecific transfer of a glucuronosyl unit from UDP-glucuronate to the 2''-hydroxyl group of the 3-glucosyl moiety of cyanidin 3-O-6''-O-malonylglucoside with a kcat value of 34 s(-1) at pH 7.0 and 30 degrees C. BpUGAT was highlyspecific for cyanidin 3-O-glucosides (e.g. Km for cyanidin 3-O-6''-O-malonylglucoside, 19 microM) and UDP-glucuronate (Km, 476 microM). The BpUGAT cDNA was isolated on the basis of the amino acid sequence of the purified enzyme. Quantitative PCR analysis showed that transcripts of BpUGAT could be specifically detected in red petals, consistent with the temporal and spatial distributions of enzyme activity in the plant and also consistent with the role of the enzyme in pigment biosynthesis. A sequence analysis revealed that BpUGAT is related to the glycosyltransferase 1 (GT1) family of the glycosyltransferase superfamily (according to the Carbohydrate-Active Enzymes (CAZy) data base). Among GT1 family members that encompass vertebrate UGATs and plant secondary product glycosyltransferases, the highest sequence similarity was found with flavonoid rhamnosyltransferases of plants (28-40% identity). Although the biological role (pigment biosynthesis) and enzymatic properties of BpUGAT are significantly different from those of vertebrate UGATs, both of these UGATs share a similarity in that the products produced by these enzymes are more water-soluble, thus facilitating their accumulation in vacuoles (in BpUGAT) or their excretion from cells (in vertebrate UGATs), corroborating the proposed general significance of GT1 family members in the metabolism of small lipophilic molecules.


Assuntos
Antocianinas/metabolismo , Asteraceae/enzimologia , Flores/enzimologia , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , Asteraceae/genética , Catálise/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Inibidores Enzimáticos/farmacologia , Flores/genética , Expressão Gênica , Glucuronosiltransferase/isolamento & purificação , Íons/farmacologia , Cinética , Metais/farmacologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Solubilidade , Especificidade por Substrato
5.
Plant J ; 38(6): 994-1003, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15165190

RESUMO

Anthocyanin acyltransferases (AATs) catalyze a regiospecific acyl transfer from acyl-CoA to the glycosyl moiety of anthocyanins, thus playing an important role in flower coloration. The known AATs are subfamily members of an acyltransferase family, the BAHD family, which play important roles in secondary metabolism in plants. Here, we describe the purification, characterization, and cDNA cloning of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers. The purified enzyme (hereafter referred to as Ss5MaT2) is a monomeric 46-kDa protein that catalyzes the transfer of the malonyl group from malonyl-CoA to the 4"'-hydroxyl group of the 5-glucosyl moiety of anthocyanins. Thus, it is a malonyl-CoA:anthocyanin 5-glucoside 4"'-O-malonyltransferase. On the basis of the partial amino acid sequences of the purified enzyme, we isolated a cDNA that encodes an acyltransferase protein. The steady-state transcript level of the gene was the highest in recently opened, fully pigmented flowers and was also correlated with the trend observed for an AAT gene responsible for the first malonylation step during salvianin biosynthesis. Immunoprecipitation studies using antibodies against the recombinant acyltransferase protein corroborated the identity of this cDNA as that encoding Ss5MaT2. The deduced amino acid sequence of Ss5MaT2 showed a low similarity (22-24% identity) to those of AATs and lacked the AAT-specific signature sequence. A phylogenetic analysis suggested that Ss5MaT2 is more related to acetyl-CoA:benzylalcohol acetyltransferase (BEAT) rather than to AAT. This is another example in which enzymes with similar, although not identical, substrate evolved from different branches of the BAHD family.


Assuntos
Aciltransferases/isolamento & purificação , Flores/enzimologia , Salvia/enzimologia , Aciltransferases/classificação , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Antocianinas , Clonagem Molecular , DNA Complementar/análise , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salvia/genética , Homologia de Sequência de Aminoácidos
6.
Plant Physiol ; 130(4): 2142-51, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481098

RESUMO

In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6"-O-malonyltransferase, from dahlia (Dahlia variabilis) flowers. We isolated a full-length cDNA (Dv3MaT) on the basis of amino acid sequences specifically conserved among anthocyanin acyltransferases of the versatile plant acyltransferase family. Dv3MaT coded for a protein of 460 amino acids. Quantitative real-time PCR analyses of Dv3MaT showed that the transcript was present in accordance with the distribution of 3MaT activities and the anthocyanin accumulation pattern in the dahlia plant. The Dv3MaT cDNA was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The recombinant Dv3MaT catalyzed the regiospecific transfer of the malonyl group from malonyl-coenzyme A (K(m), 18.8 microM) to pelargonidin 3-O-glucoside (K(m), 46.7 microM) to produce pelargonidin 3-O-6"-O-malonylglucoside with a k(cat) value of 7.3 s(-1). The other enzymatic profiles of the recombinant Dv3MaT were closely related to those of native anthocyanin malonyltransferase activity in the extracts of dahlia flowers. Dv3MaT cDNA was introduced into petunia (Petunia hybrida) plants whose red floral color is exclusively provided by cyanidin 3-O-glucoside and 3,5-O-diglucoside. Thirteen transgenic lines of petunia were found to produce malonylated products of these anthocyanins (11-63 mol % of total anthocyanins in the flower). The spectral stability of cyanidin 3-O-6"-O-malonylglucoside at the pHs of intracellular milieus of flowers was significantly higher than that of cyanidin 3-O-glucoside. Moreover, 6"-O-malonylation of cyanidin 3-O-glucoside effectively prevented the anthocyanin from attack of beta-glucosidase. These results suggest that malonylation should serve as a strategy for pigment stabilization in the flowers.


Assuntos
Aciltransferases/genética , Dahlia/genética , Flores/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Antocianinas/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Dahlia/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Petunia/genética , Petunia/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA