Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biochem Biophys Res Commun ; 522(1): 144-150, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31757415

RESUMO

Mitochondrial dynamics are crucial for cellular survival in response to various stresses. Previously, we reported that Drp1 promoted mitochondrial fission after x-irradiation and its inhibition resulted in reduced cellular radiosensitivity and mitotic catastrophe. However, the mechanisms of radiation-induced mitotic catastrophe related to mitochondrial fission remain unclear. In this study, we investigated the involvement of cellular ATP production, ROS generation, and Ca2+ levels in mitotic catastrophe in EMT6 cells. Knockdown of Drp1 and Fis1, which are mitochondrial fission regulators, resulted in elongated mitochondria and significantly attenuated cellular radiosensitivity. Reduced mitochondrial fission mainly decreased mitotic catastrophe rather than necrosis and apoptosis after irradiation. Cellular ATP contents in Drp1 and Fis1 knockdown cells were similar to those in control cells. N-acetylcysteine and 2-glucopyranoside ascorbic acid have no effect on mitotic catastrophe after irradiation. The cellular [Ca2+]i level increased after irradiation, which was completely suppressed by Drp1 and Fis1 inhibition. Furthermore, BAPTA-AM significantly reduced radiation-induced mitotic catastrophe, indicating that cellular Ca2+ is a key mediator of mitotic catastrophe induction after irradiation. These results suggest that mitochondrial fission is associated with radiation-induced mitotic catastrophe via cytosolic Ca2+ regulation.


Assuntos
Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Dinâmica Mitocondrial , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Feminino , Camundongos , Dinâmica Mitocondrial/efeitos da radiação , Mitose/efeitos da radiação , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Raios X
2.
J Clin Biochem Nutr ; 67(3): 240-247, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33293764

RESUMO

Mitotic catastrophe is a form of cell death linked to aberrant mitosis caused by improper or uncoordinated mitotic progression. Abnormal centrosome amplification and mitotic catastrophe occur simultaneously, and some cells with amplified centrosomes enter aberrant mitosis, but it is not clear whether abnormal centrosome amplification triggers mitotic catastrophe. Here, to investigate whether radiation-induced abnormal centrosome amplification is essential for induction of radiation-induced mitotic catastrophe, centrinone-B, a highly selective inhibitor of polo-like kinase 4, was utilized to inhibit centrosome amplification, since polo-like kinase 4 is an essential kinase in centrosome duplication. When human cervical tumor HeLa cells and murine mammary tumor EMT6 cells were irradiated with 2.5 Gy of X-rays, cells with morphological features of mitotic catastrophe and the number of cells having >2 centrosomes increased in both cell lines. Although centrinone-B significantly inhibited radiation-induced abnormal centrosome amplification in both cell lines, such treatment did not change cell growth and significantly enhanced mitotic catastrophe in HeLa cells exposed to X-rays. In contrast, inhibition of centrosome amplification reduced cell growth and mitotic catastrophe in EMT6 cells exposed to X-rays. These results indicated that the role of radiation-induced abnormal centrosome amplification in radiation-induced mitotic catastrophe changes, depending on the cell type.

3.
Biochem Biophys Res Commun ; 495(2): 1601-1607, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217195

RESUMO

Mitochondrial dynamics are suggested to be indispensable for the maintenance of cellular quality and function in response to various stresses. While ionizing radiation (IR) stimulates mitochondrial fission, which is mediated by the mitochondrial fission protein, dynamin-related protein 1 (Drp1), it remains unclear how IR promotes Drp1 activation and subsequent mitochondrial fission. Therefore, we conducted this study to investigate these concerns. First, we found that X-irradiation triggered Drp1 phosphorylation at serine 616 (S616) but not at serine 637 (S637). Reconstitution analysis revealed that introduction of wild-type (WT) Drp1 recovered radiation-induced mitochondrial fission, which was absent in Drp1-deficient cells. Compared with cells transfected with WT or S637A Drp1, the change in mitochondrial shape following irradiation was mitigated in S616A Drp1-transfected cells. Furthermore, inhibition of CaMKII significantly suppressed Drp1 S616 phosphorylation and mitochondrial fission induced by IR. These results suggest that Drp1 phosphorylation at S616, but not at S637, is prerequisite for radiation-induced mitochondrial fission and that CaMKII regulates Drp1 phosphorylation at S616 following irradiation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dinaminas/metabolismo , Dinâmica Mitocondrial/fisiologia , Dinâmica Mitocondrial/efeitos da radiação , Substituição de Aminoácidos , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Dinaminas/química , Dinaminas/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Dinâmica Mitocondrial/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Sulfonamidas/farmacologia , Transfecção
4.
Exp Parasitol ; 183: 92-98, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29122576

RESUMO

The mechanism of the development of diminazene aceturate (DA) resistance in Babesia gibsoni is still unknown even though DA-resistant B. gibsoni isolate was previously developed in vitro. To clarify the mechanisms of DA-resistance in B. gibsoni, we initially examined the intracellular DA content in the DA-resistant isolate using high-performance liquid chromatography, and compared it with that in the wild-type. As a result, the intracellular DA content in the DA-resistant isolate was significantly lower than that in the wild-type, suggesting that the decreased DA content may contribute to DA-resistance. Additionally, the glucose consumption of the DA-resistant isolate was significantly higher than that of the wild-type, indicating that a large amount of glucose is utilized to maintain DA-resistance. It is possible that a large amount of energy is utilized to maintain the mechanisms of DA-resistance. It was reported that as the structure of DA is similar with that of adenosine, DA may be taken up by the P2 transporter, which contributes to the uptake of adenosine, in Trypanosoma brucei brucei, and that the uptake of adenosine is decreased in DA-resistant T. brucei brucei. In the present study, the adenosine incorporation in the DA-resistant B. gibsoni isolate was higher than in the wild-type. Moreover, the adenosine incorporation in the wild-type was not inhibited by the presence of DA. These results suggest that adenosine transport in B. gibsoni is not affected by DA and may not mediate DA-resistance. To clarify the mechanism of the development of DA resistance in B. gibsoni, we should investigate the cause of the decreased DA content in the DA-resistant isolate in the future.


Assuntos
Adenosina/metabolismo , Babesia/química , Diminazena/análogos & derivados , Animais , Babesia/efeitos dos fármacos , Babesia/metabolismo , Babesiose/parasitologia , Glicemia/metabolismo , Cromatografia Líquida de Alta Pressão , Diminazena/análise , Diminazena/farmacologia , Doenças do Cão/parasitologia , Cães , Resistência a Medicamentos , Contagem de Eritrócitos/veterinária , Eritrócitos/química , Eritrócitos/parasitologia , Hipoxantina/metabolismo , Masculino , Parasitemia/parasitologia , Parasitemia/veterinária , Potássio/sangue , Sódio/sangue
5.
Biochem Biophys Res Commun ; 461(1): 35-41, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25858321

RESUMO

The DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) plays a central role in base excision repair and functions as a reductive activator of various transcription factors. Multiple other functionalities have been ascribed to APE1 in addition to these major functions. A recent study showed that APE1 knockdown upregulated the expression of a set of genes related to extracellular matrix (ECM) production, indicating an additional novel biological role for this enzyme. Based on this finding, we have investigated the effect of APE1 downregulation on ECM-related gene expression and its biological consequences. Endogenous APE1 expression was downregulated in human cervical carcinoma HeLa cells and human lung carcinoma A549 cells using siRNA. When the expression of six ECM-related genes (TGFB1, LAMC1, FN1, COL1A1, COL3A1, and COL4A1) was evaluated, we found that APE1 knockdown upregulated the expression of TGFB1 in both cell lines. APE1 downregulation promoted actin rearrangement, inducing F-actin accumulation in HeLa cells and the dissipation of stress fibers in A549 cells. We also discovered that APE1 knockdown enhanced cellular motility in A549 cells, which was suppressed by the inhibition of transforming growth factor (TGF)-ß1 signaling. These results suggested that APE1 controls the organization of actin cytoskeleton through the regulation of TGF-ß1 expression, providing novel insights into the biological significance of APE1.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias Experimentais/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação para Baixo/fisiologia , Células HeLa , Humanos
6.
Biochem Biophys Res Commun ; 456(1): 541-6, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25498542

RESUMO

In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.


Assuntos
Aorta/citologia , Dano ao DNA , Reparo do DNA , Células Endoteliais/efeitos da radiação , Regulação Enzimológica da Expressão Gênica , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aorta/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Benzoquinonas/química , Bovinos , Citoplasma/metabolismo , Células Endoteliais/citologia , Proteínas de Choque Térmico HSP90/metabolismo , Imuno-Histoquímica , Lactamas Macrocíclicas/química , Morfolinas/química , Óxido Nítrico Sintase/metabolismo , Fosforilação , Radiação Ionizante , Tioxantenos/química , Fatores de Tempo , Raios X
7.
NPJ Microgravity ; 10(1): 84, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122696

RESUMO

The analysis of cells frozen within the International Space Station (ISS) will provide crucial insights into the impact of the space environment on cellular functions and properties. The objective of this study was to develop a method for cryopreserving blood cells under the specific constraints of the ISS. In a ground experiment, mouse blood was directly mixed with a cryoprotectant and gradually frozen at -80 °C. Thawing the frozen blood sample resulted in the successful recovery of viable mononuclear cells when using a mixed solution of dimethylsulfoxide and hydroxyethyl starch as a cryoprotectant. In addition, we developed new freezing cases to minimize storage space utilization within the ISS freezer. Finally, we confirmed the recovery of major mononuclear immune cell subsets from the cryopreserved blood cells through a high dimensional analysis of flow cytometric data using 13 cell surface markers. Consequently, this ground study lays the foundation for the cryopreservation of viable blood cells on the ISS, enabling their analysis upon return to Earth. The application of this method in ISS studies will contribute to understanding the impact of space environments on human cells. Moreover, this method may find application in the cryopreservation of blood cells in situations where research facilities are inadequate.

8.
Biochem Biophys Res Commun ; 437(3): 420-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23831468

RESUMO

Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10Gy×2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy.


Assuntos
Carcinoma de Células Escamosas/prevenção & controle , Glioma/metabolismo , Glioma/prevenção & controle , Óxido Nítrico/efeitos da radiação , Óxido Nítrico/uso terapêutico , Tolerância a Radiação/genética , Animais , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioma/etiologia , Hipóxia/patologia , Hipóxia/prevenção & controle , Camundongos , Camundongos Endogâmicos C3H , Óxido Nítrico/biossíntese , Radiação Ionizante , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
9.
BMC Cancer ; 13: 106, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23496909

RESUMO

BACKGROUND: Glioblastoma is one of the intractable cancers and is highly resistant to ionizing radiation. This radioresistance is partly due to the presence of a hypoxic region which is widely found in advanced malignant gliomas. In the present study, we evaluated the effectiveness of the hypoxic cell sensitizer doranidazole (PR-350) using the C6 rat glioblastoma model, focusing on the status of blood brain barrier (BBB). METHODS: Reproductive cell death in the rat C6 glioma cell line was determined by means of clonogenic assay. An intracranial C6 glioma model was established for the in vivo experiments. To investigate the status of the BBB in C6 glioma bearing brain, we performed the Evans blue extravasation test. Autoradiography with [(14)C]-doranidazole was performed to examine the distribution of doranidazole in the glioma tumor. T2-weighted MRI was employed to examine the effects of X-irradiation and/or doranidazole on tumor growth. RESULTS: Doranidazole significantly enhanced radiation-induced reproductive cell death in vitro under hypoxia, but not under normoxia. The BBB in C6-bearing brain was completely disrupted and [(14)C]-doranidazole specifically penetrated the tumor regions. Combined treatment with X-irradiation and doranidazole significantly inhibited the growth of C6 gliomas. CONCLUSIONS: Our results revealed that BBB disruption in glioma enables BBB-impermeable radiosensitizers to penetrate and distribute in the target region. This study is the first to propose that in malignant glioma the administration of hydrophilic hypoxic radiosensitizers could be a potent strategy for improving the clinical outcome of radiotherapy without side effects.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Imidazóis/farmacologia , Radiossensibilizantes/farmacologia , Animais , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/patologia , Estudos Prospectivos , Ratos
10.
iScience ; 26(11): 108177, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38107876

RESUMO

Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.

11.
J Biol Chem ; 286(28): 24666-73, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613228

RESUMO

24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.


Assuntos
Córtex Cerebral/metabolismo , Hidroxicolesteróis/farmacologia , Neurônios/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caspase 8/biossíntese , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Córtex Cerebral/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Necrose/metabolismo , Necrose/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
12.
Hum Mol Genet ; 19(21): 4123-33, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20693263

RESUMO

The SIRTUIN1 (SIRT1) deacetylase responds to changes in nutrient availability and regulates mammalian physiology and metabolism. Human and mouse SIRT1 are transcriptionally repressed by p53 via p53 response elements in their proximal promoters. Here, we identify a novel p53-binding sequence in the distal human SIRT1 promoter that is required for nutrient-sensitive SIRT1 transcription. In addition, we show that a common single-nucleotide (C/T) variation in this sequence affects nutrient deprivation-induced SIRT1 transcription, and calorie restriction-induced SIRT1 expression. The p53-binding sequence lies in a region of the SIRT1 promoter that also binds the transcriptional repressor Hypermethylated-In-Cancer-1 (HIC1). Nutrient deprivation increases occupancy by p53, while decreasing occupancy by HIC1, of this region of the promoter. HIC1 and p53 compete with each other for promoter occupancy. In comparison with the T variation, the C variation disrupts the mirror image symmetry of the p53-binding sequence, resulting in decreased binding to p53, decreased nutrient sensitivity of the promoter and impaired calorie restriction-stimulated tissue expression of SIRT1 and SIRT1 target genes AMPKα2 and PGC-1ß. Thus, a common SNP in a novel p53-binding sequence in the human SIRT1 promoter affects nutrient-sensitive SIRT1 expression, and could have a significant impact on calorie restriction-induced, SIRT1-mediated, changes in human metabolism and physiology.


Assuntos
Restrição Calórica , Polimorfismo de Nucleotídeo Único , Sirtuína 1/genética , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , Transcrição Gênica , Regulação para Cima
13.
BMC Cancer ; 12: 469, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23057787

RESUMO

BACKGROUND: Anti-cancer drugs are widely used in cancer treatment frequently combined with surgical therapy and/or radiation therapy. Although surgery and radiation have been suggested to facilitate invasion and metastasis of tumor cells in some cases, there is so far little information about the effect of anti-cancer drugs on cellular invasive ability and metastasis. In this study, using four different anti-cancer drugs (vincristine, paclitaxel, cisplatin and etoposide), we examined whether these drugs influence the invasive ability of tumor cells. METHODS: Human gastric adenocarcinoma MKN45 cells were used to evaluate the effect of anti-cancer drugs. After drug treatment, cellular invasive ability was assessed using the Matrigel invasion chamber. Cytoskeletal changes after treatment were examined microscopically with F-actin staining. In addition, we monitored cellular motility in 3D matrigel environment by time-lapse microscopic analysis. The drug-induced activation of RhoA and ROCK was evaluated by pull-down assay and Western blotting using an antibody against phosphorylated myosin light chain (MLC), respectively. Where necessary, a ROCK inhibitor Y27632 and siRNA for guanine nucleotide exchange factor-H1 (GEF-H1) were applied. RESULTS: Among all drugs tested, only vincristine stimulated the invasive ability of MKN45 cells. Microscopic analysis revealed that vincristine induced the formation of non-apoptotic membrane blebs and amoeboid-like motility. Vincristine significantly enhanced RhoA activity and MLC phosphorylation, suggesting the involvement of RhoA/ROCK pathway in the vincristine-induced cytoskeletal reorganization and cellular invasion. Furthermore, we found that Y27632 as well as the siRNA for GEF-H1, a RhoA-specific activator, attenuated MLC phosphorylation, the formation of membrane blebs and the invasive ability after vincristine treatment. CONCLUSIONS: These results indicate that vincristine activates GEF-H1/RhoA/ROCK/MLC signaling, thereby promoting amoeboid-like motility and the invasive ability of MKN45 cells.


Assuntos
Adenocarcinoma/patologia , Movimento Celular/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cadeias Leves de Miosina/metabolismo , Neoplasias Gástricas/patologia , Vincristina/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cisplatino/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Etoposídeo/farmacologia , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Paclitaxel/farmacologia , Fosforilação/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/metabolismo
14.
Circ Res ; 107(7): 877-87, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20705923

RESUMO

RATIONALE: Low-dose acetylsalicylic acid (aspirin) is widely used in the treatment and prevention of vascular atherothrombosis. Cardiovascular doses of aspirin also reduce systemic blood pressure and improve endothelium-dependent vasorelaxation in patients with atherosclerosis or risk factors for atherosclerosis. Aspirin can acetylate proteins, other than its pharmacological target cyclooxygenase, at lysine residues. The role of lysine acetylation in mediating the effects of low-dose aspirin on the endothelium is not known. OBJECTIVE: To determine the role of lysine acetylation of endothelial nitric oxide synthase (eNOS) in the regulation of endothelial NO production by low-dose aspirin and to examine whether the lysine deacetylase histone deacetylase (HDAC)3 antagonizes the effect of low-dose aspirin on endothelial NO production by reversing acetylation of functionally critical eNOS lysine residues. METHODS AND RESULTS: Low concentrations of aspirin induce lysine acetylation of eNOS, stimulating eNOS enzymatic activity and endothelial NO production in a cyclooxygenase-1-independent fashion. Low-dose aspirin in vivo also increases bioavailable vascular NO in an eNOS-dependent and cyclooxygenase-1-independent manner. Low-dose aspirin promotes the binding of eNOS to calmodulin. Lysine 609 in the calmodulin autoinhibitory domain of bovine eNOS mediates aspirin-stimulated binding of eNOS to calmodulin and eNOS-derived NO production. HDAC3 inhibits aspirin-stimulated (1) lysine acetylation of eNOS, (2) eNOS enzymatic activity, (3) eNOS-derived NO, and (4) binding of eNOS to calmodulin. Conversely, downregulation of HDAC3 promotes lysine acetylation of eNOS and endothelial NO generation. CONCLUSIONS: Lysine acetylation of eNOS is a posttranslational protein modification supporting low-dose aspirin-induced vasoprotection. HDAC3, by deacetylating aspirin-acetylated eNOS, antagonizes aspirin-stimulated endothelial production of NO.


Assuntos
Aspirina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Histona Desacetilases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Acetilação/efeitos dos fármacos , Animais , Calmodulina/metabolismo , Bovinos , Linhagem Celular , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Rim/citologia , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Óxido Nítrico Sintase Tipo III/genética , Inibidores da Agregação Plaquetária/farmacologia , Processamento de Proteína Pós-Traducional/fisiologia , Veias Umbilicais/citologia
15.
Nucleic Acids Res ; 38(3): 832-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19934257

RESUMO

Apurinic/apyrimidinic endonuclease-1 (APE1) is an essential enzyme in the base excision repair (BER) pathway. Here, we show that APE1 is a target of the SIRTUIN1 (SIRT1) protein deacetylase. SIRT1 associates with APE1, and this association is increased with genotoxic stress. SIRT1 deacetylates APE1 in vitro and in vivo targeting lysines 6 and 7. Genotoxic insults stimulate lysine acetylation of APE1 which is antagonized by transcriptional upregulation of SIRT1. Knockdown of SIRT1 increases cellular abasic DNA content, sensitizing cells to death induced by genotoxic stress, and this vulnerability is rescued by overexpression of APE1. Activation of SIRT1 with resveratrol promotes binding of APE1 to the BER protein X-ray cross-complementing-1 (XRCC1), while inhibition of SIRT1 with nicotinamide (NAM) decreases this interaction. Genotoxic insult also increases binding of APE1 to XRCC1, and this increase is suppressed by NAM or knockdown of SIRT1. Finally, resveratrol increases APE activity in XRCC1-associated protein complexes, while NAM or knockdown of SIRT1 suppresses this DNA repair activity. These findings identify APE1 as a novel protein target of SIRT1, and suggest that SIRT1 plays a vital role in maintaining genomic integrity through regulation of the BER pathway.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Sirtuína 1/metabolismo , Acetilação , Linhagem Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/análise , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Lisina/metabolismo , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Sirtuína 1/análise , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
16.
Mol Cancer ; 10: 92, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21798026

RESUMO

BACKGROUND: A novel anticancer drug 1-(3-C-ethynyl-ß-D-ribo-pentofuranosyl)cytosine (ECyd, TAS106) has been shown to radiosensitize tumor cells and to improve the therapeutic efficiency of X-irradiation. However, the effect of TAS106 on cellular DNA repair capacity has not been elucidated. Our aim in this study was to examine whether TAS106 modified the repair capacity of DNA double-strand breaks (DSBs) in tumor cells. METHODS: Various cultured cell lines treated with TAS106 were irradiated and then survival fraction was examined by the clonogenic survival assays. Repair of sublethal damage (SLD), which indicates DSBs repair capacity, was measured as an increase of surviving cells after split dose irradiation with an interval of incubation. To assess the effect of TAS106 on the DSBs repair activity, the time courses of γ-H2AX and 53BP1 foci formation were examined by using immunocytochemistry. The expression of DNA-repair-related proteins was also examined by Western blot analysis and semi-quantitative RT-PCR analysis. RESULTS: In clonogenic survival assays, pretreatment of TAS106 showed radiosensitizing effects in various cell lines. TAS106 inhibited SLD repair and delayed the disappearance of γ-H2AX and 53BP1 foci, suggesting that DSB repair occurred in A549 cells. Western blot analysis demonstrated that TAS106 down-regulated the expression of BRCA2 and Rad51, which are known as keys among DNA repair proteins in the homologous recombination (HR) pathway. Although a significant radiosensitizing effect of TAS106 was observed in the parental V79 cells, pretreatment with TAS106 did not induce any radiosensitizing effects in BRCA2-deficient V-C8 cells. CONCLUSIONS: Our results indicate that TAS106 induces the down-regulation of BRCA2 and the subsequent abrogation of the HR pathway, leading to a radiosensitizing effect. Therefore, this study suggests that inhibition of the HR pathway may be useful to improve the therapeutic efficiency of radiotherapy for solid tumors.


Assuntos
Proteína BRCA2/genética , Citidina/análogos & derivados , Radiossensibilizantes/farmacologia , Animais , Antineoplásicos/farmacologia , Proteína BRCA2/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Citidina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/genética , Recombinação Homóloga/efeitos da radiação , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/radioterapia , Nucleosídeos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética
17.
J Cell Biol ; 172(6): 817-22, 2006 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-16520382

RESUMO

The Son of Sevenless 1 protein (sos1) is a guanine nucleotide exchange factor (GEF) for either the ras or rac1 GTPase. We show that p66shc, an adaptor protein that promotes oxidative stress, increases the rac1-specific GEF activity of sos1, resulting in rac1 activation. P66shc decreases sos1 bound to the growth factor receptor bound protein (grb2) and increases the formation of the sos1-eps8-e3b1 tricomplex. The NH(2)-terminal proline-rich collagen homology 2 (CH2) domain of p66shc associates with full-length grb2 in vitro via the COOH-terminal src homology 3 (C-SH3) domain of grb2. A proline-rich motif (PPLP) in the CH2 domain mediates this association. The CH2 domain competes with the proline-rich COOH-terminal region of sos1 for the C-SH3 domain of grb2. P66shc-induced dissociation of sos1 from grb2, formation of the sos1-eps8-e3b1 complex, rac1-specific GEF activity of sos1, rac1 activation, and oxidative stress are also mediated by the PPLP motif in the CH2 domain. This relationship between p66shc, grb2, and sos1 provides a novel mechanism for the activation of rac1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Son Of Sevenless/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos/fisiologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas do Citoesqueleto , Regulação para Baixo/genética , Ativação Enzimática/genética , Fibroblastos , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Terciária de Proteína/fisiologia , Proteínas Adaptadoras da Sinalização Shc , Proteínas Son Of Sevenless/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Proteínas rac1 de Ligação ao GTP/genética
18.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117068

RESUMO

Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.

19.
Biochem Biophys Res Commun ; 394(3): 522-8, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20206606

RESUMO

To explore Cu(II) ion coordination by His(186) in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP(C).


Assuntos
Cobre/metabolismo , Histidina/metabolismo , Proteínas PrPC/metabolismo , Animais , Histidina/genética , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Proteínas PrPC/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
Circ Res ; 103(12): 1441-50, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18988897

RESUMO

The transcription factor, p53, and the adaptor protein, p66shc, both play essential roles in promoting oxidative stress in the vascular system. However, the relationship between the two in the context of endothelium-dependent vascular tone is unknown. Here, we report a novel, evolutionarily conserved, p53-mediated transcriptional mechanism that regulates p66shc expression and identify p53 as an important determinant of endothelium-dependent vasomotor function. We provide evidence of a p53 response element in the promoter of p66shc and show that angiotensin II-induced upregulation of p66shc in endothelial cells is dependent on p53. In addition, we demonstrate that downregulation of p66shc expression, as well as inhibition of p53 function in mice, mitigates angiotensin II-induced impairment of endothelium-dependent vasorelaxation, decrease in bioavailable nitric oxide, and hypertension. These findings reveal a novel p53-dependent transcriptional mechanism for the regulation of p66shc expression that is operative in the vascular endothelium and suggest that this mechanism is important in impairing endothelium-dependent vascular relaxation.


Assuntos
Endotélio Vascular/fisiopatologia , Proteínas Adaptadoras da Sinalização Shc/biossíntese , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Regulação para Cima/fisiologia , Sistema Vasomotor/fisiopatologia , Animais , Linhagem Celular , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Humanos , Camundongos , Ratos , Ratos Endogâmicos WKY , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Vasodilatação/genética , Vasodilatação/fisiologia , Sistema Vasomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA