Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 23(7): 2441-2451, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38833655

RESUMO

Global profiling of single-cell proteomes can reveal cellular heterogeneity, thus benefiting precision medicine. However, current mass spectrometry (MS)-based single-cell proteomic sample processing still faces technical challenges associated with processing efficiency and protein recovery. Herein, we present an innovative sample processing platform based on a picoliter single-cell reactor (picoSCR) for single-cell proteome profiling, which involves in situ protein immobilization and sample transfer. PicoSCR helped minimize surface adsorptive losses by downscaling the processing volume to 400 pL with a contact area of less than 0.4 mm2. Besides, picoSCR reached highly efficient cell lysis and digestion within 30 min, benefiting from optimal reagent and high reactant concentrations. Using the picoSCR-nanoLC-MS system, over 1400 proteins were identified from an individual HeLa cell using data-dependent acquisition mode. Proteins with copy number below 1000 were identified, demonstrating this system with a detection limit of 1.7 zmol. Furthermore, we profiled the proteome of circulating tumor cells (CTCs). Data are available via ProteomeXchange with the identifier PXD051468. Proteins associated with epithelial-mesenchymal transition and neutrophil extracellular traps formation (which are both related to tumor metastasis) were observed in all CTCs. The cellular heterogeneity was revealed by differences in signaling pathways within individual cells. These results highlighted the potential of the picoSCR platform to help discover new biomarkers and explore differences in biological processes between cells.


Assuntos
Proteoma , Proteômica , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Células HeLa , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Transição Epitelial-Mesenquimal , Reatores Biológicos
2.
Anal Chem ; 96(24): 9849-9858, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836774

RESUMO

The scarcity and dynamic nature of phosphotyrosine (pTyr)-modified proteins pose a challenge for researching protein complexes with pTyr modification, which are assembled through multiple protein-protein interactions. We developed an integrated complex-centric platform for large-scale quantitative profiling of pTyr signaling complexes based on cofractionation/mass spectrometry (CoFrac-MS) and a complex-centric algorithm. We initially constructed a trifunctional probe based on pTyr superbinder (SH2-S) for specifically binding and isolation of intact pTyr protein complexes. Then, the CoFrac-MS strategy was employed for the identification of pTyr protein complexes by integrating ion exchange chromatography in conjunction with data independent acquisition mass spectrometry. Furthermore, we developed a novel complex-centric algorithm for quantifying protein complexes based on the protein complex elution curve. Utilizing this algorithm, we effectively quantified 216 putative protein complexes. We further screened 21 regulated pTyr protein complexes related to the epidermal growth factor signal. Our study engenders a comprehensive framework for the intricate examination of pTyr protein complexes and presents, for the foremost occasion, a quantitative landscape delineating the composition of pTyr protein complexes in HeLa cells.


Assuntos
Algoritmos , Espectrometria de Massas , Fosfotirosina , Transdução de Sinais , Fosfotirosina/metabolismo , Fosfotirosina/análise , Fosfotirosina/química , Humanos , Células HeLa , Cromatografia por Troca Iônica/métodos
3.
Nature ; 559(7715): 637-641, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022161

RESUMO

Diabetes is a complex metabolic syndrome that is characterized by prolonged high blood glucose levels and frequently associated with life-threatening complications1,2. Epidemiological studies have suggested that diabetes is also linked to an increased risk of cancer3-5. High glucose levels may be a prevailing factor that contributes to the link between diabetes and cancer, but little is known about the molecular basis of this link and how the high glucose state may drive genetic and/or epigenetic alterations that result in a cancer phenotype. Here we show that hyperglycaemic conditions have an adverse effect on the DNA 5-hydroxymethylome. We identify the tumour suppressor TET2 as a substrate of the AMP-activated kinase (AMPK), which phosphorylates TET2 at serine 99, thereby stabilizing the tumour suppressor. Increased glucose levels impede AMPK-mediated phosphorylation at serine 99, which results in the destabilization of TET2 followed by dysregulation of both 5-hydroxymethylcytosine (5hmC) and the tumour suppressive function of TET2 in vitro and in vivo. Treatment with the anti-diabetic drug metformin protects AMPK-mediated phosphorylation of serine 99, thereby increasing TET2 stability and 5hmC levels. These findings define a novel 'phospho-switch' that regulates TET2 stability and a regulatory pathway that links glucose and AMPK to TET2 and 5hmC, which connects diabetes to cancer. Our data also unravel an epigenetic pathway by which metformin mediates tumour suppression. Thus, this study presents a new model for how a pernicious environment can directly reprogram the epigenome towards an oncogenic state, offering a potential strategy for cancer prevention and treatment.


Assuntos
Adenilato Quinase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , DNA/química , DNA/metabolismo , Metilação de DNA , Diabetes Mellitus/genética , Dioxigenases , Estabilidade Enzimática , Epigênese Genética , Hemoglobinas Glicadas/análise , Humanos , Hiperglicemia/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosforilação , Fosfosserina/metabolismo , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Artigo em Inglês | MEDLINE | ID: mdl-38952341

RESUMO

Immune checkpoint inhibitors (ICIs) targeting programmed cell death 1/programmed cell death ligand-1 (PD-1/PD-L1) have significantly prolonged the survival of advanced/metastatic patients with lung cancer. However, only a small proportion of patients can benefit from ICIs, and clinical management of the treatment process remains challenging. Glycosylation has added a new dimension to advance our understanding of tumor immunity and immunotherapy. To systematically characterize anti-PD-1/PD-L1 immunotherapy-related changes in serum glycoproteins, a series of serum samples from 12 patients with metastatic lung squamous cell carcinoma (SCC) and lung adenocarcinoma (ADC), collected before and during ICIs treatment, are firstly analyzed with mass-spectrometry-based label-free quantification method. Second, a stratification analysis is performed among anti-PD-1/PD-L1 responders and non-responders, with serum levels of glycopeptides correlated with treatment response. In addition, in an independent validation cohort, a large-scale site-specific profiling strategy based on chemical labeling is employed to confirm the unusual characteristics of IgG N-glycosylation associated with anti-PD-1/PD-L1 treatment. Unbiased label-free quantitative glycoproteomics reveals serum levels' alterations related to anti-PD-1/PD-L1 treatment in 27 out of 337 quantified glycopeptides. The intact glycopeptide EEQFN 177STYR (H3N4) corresponding to IgG4 is significantly increased during anti-PD-1/PD-L1 treatment (FC=2.65, P=0.0083) and has the highest increase in anti-PD-1/PD-L1 responders (FC=5.84, P=0.0190). Quantitative glycoproteomics based on protein purification and chemical labeling confirms this observation. Furthermore, obvious associations between the two intact glycopeptides (EEQFN 177STYR (H3N4) of IgG4, EEQYN 227STFR (H3N4F1) of IgG3) and response to treatment are observed, which may play a guiding role in cancer immunotherapy. Our findings could benefit future clinical disease management.

5.
Anal Chem ; 95(2): 881-888, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580660

RESUMO

Among diverse protein post-translational modifications, O-GlcNAcylation, a simple but essential monosaccharide modification, plays crucial roles in cellular processes and is closely related to various diseases. Despite its ubiquity in cells, properties of low stoichiometry and reversibility are hard nuts to crack in system-wide research of O-GlcNAc. Herein, we developed a novel method employing multi-comparative thermal proteome profiling for O-GlcNAc transferase (OGT) substrate discovery. Melting curves of proteins under different treatments were profiled and compared with high reproducibility and consistency. Consequently, proteins with significantly shifted stabilities caused by OGT and uridine-5'-diphosphate N-acetylglucosamine were screened out from which new O-GlcNAcylated proteins were uncovered.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Proteoma/metabolismo , Reprodutibilidade dos Testes , Acetilglucosamina/química
6.
Anal Chem ; 95(28): 10703-10712, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37403577

RESUMO

Recent developments in phosphoproteomics have enabled signaling studies where over 10,000 phosphosites can be routinely identified and quantified. Yet, current analyses are limited in sample size, reproducibility, and robustness, hampering experiments that involve low-input samples such as rare cells and fine-needle aspiration biopsies. To address these challenges, we introduced a simple and rapid phosphorylation enrichment method (miniPhos) that uses a minimal amount of the sample to get enough information to decipher biological significance. The miniPhos approach completed the sample pretreatment within 4 h and high effectively collected the phosphopeptides in a single-enrichment format with an optimized enrichment process and miniaturized system. This resulted in an average of 22,000 phosphorylation peptides quantified from 100 µg of proteins and even confidently localized over 4500 phosphosites from as little as 10 µg of peptides. Further application was carried out on different layers of mouse brain micro-sections; our miniPhos method provided quantitative information on protein abundance and phosphosite regulation for the most relevant neurodegenerative diseases, cancers, and signaling pathways in the mouse brain. Surprisingly, the phosphoproteome exhibited more spatial variations than the proteome in the mouse brain. Overall, spatial dynamics of phosphosites are integrated with proteins to gain insights into crosstalk of cellular regulation at different layers, thereby facilitating a more comprehensive understanding of mouse brain development and activity.


Assuntos
Fosfopeptídeos , Proteoma , Camundongos , Animais , Reprodutibilidade dos Testes , Fosforilação , Proteoma/análise , Fosfopeptídeos/análise , Encéfalo/metabolismo
7.
Analyst ; 148(20): 5002-5011, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728433

RESUMO

Human angiotensin-converting enzyme 2 (hACE2) is the primary receptor for cellular entry of SARS-CoV-2 into human host cells. hACE2 is heavily glycosylated and glycans on the receptor may play a role in viral binding. Thus, comprehensive characterization of hACE2 glycosylation could aid our understanding of interactions between the receptor and SARS-CoV-2 spike (S) protein, as well as provide a basis for the development of therapeutic drugs targeting this crucial interaction. Herein, 138 N-glycan compositions were identified, most of which are complex-type N-glycans, from seven N-glycosites of hACE2. Among them, 67% contain at least one sialic acid residue. At the level of glycopeptides, the overall quantification of sialylated glycan isomers observed on the sites N322 and N546 have a higher degree of NeuAc (α2-3)Gal (over 80.3%) than that of other N-glycosites (35.6-71.0%). In terms of O-glycans, 69 glycan compositions from 12 O-glycosites were identified, and especially, the C-terminus of hACE2 is heavily O-glycosylated. The terminal sialic acid linkage type of H1N1S1 and H1N1S2 are covered highly with α2,3-sialic acid. These findings could aid the investigation of the interaction between SARS-CoV-2 and human host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Glicosilação , Ácido N-Acetilneuramínico , Polissacarídeos/química , Ligação Proteica , SARS-CoV-2/metabolismo
8.
Anal Chem ; 94(11): 4666-4676, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258917

RESUMO

Linkage isomers (α-2,3- or α-2,6-linkage) of sialylated N-glycans are involved in the emergence and progression of some diseases, so they are of great significance for diagnosing and monitoring diseases. However, the qualitative and quantitative analysis of sialylated N-glycan linkage isomers remains challenging due to their low abundance and limited isomeric separation techniques. Herein, we developed a novel strategy integrating one-step sialic acid derivatization, positive charge-sensitive separation and highly sensitive detection based on microfluidic capillary electrophoresis-mass spectrometry (MCE-MS) for fast and specific analysis of α-2,3- and α-2,6-linked sialylated N-glycan isomers. A kind of easily charged long-chain amino compound was screened first for one-step sialic acid derivatization so that only α-2,3- and α-2,6-linked isomers can be quickly and efficiently separated within 10 min by MCE due to the difference in structural conformation, whose separation mechanism was further theoretically supported by molecular dynamic simulation. In addition, different sialylated N-glycans were separated in order according to the number of sialic acids, so that a migration time-based prediction of the number of sialic acids was achieved. Finally, the sialylated N-glycome of human serum was profiled within 10 min and 6 of the 52 detected sialylated N-glycans could be potential diagnostic biomarkers of cervical cancer (CC), whose α-2,3- and α-2,6-linked isomers were distinguished by α-2,3Neuraminidase S.


Assuntos
Microfluídica , Ácido N-Acetilneuramínico , Eletroforese Capilar , Humanos , Espectrometria de Massas , Polissacarídeos/química , Ácidos Siálicos/análise
9.
Anal Chem ; 93(13): 5537-5546, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33752328

RESUMO

Sialylated N-glycan isomers with α-2,3 and α-2,6 linkages play crucial and distinctive roles in diverse physiological and pathological processes. Changes of α-2,3-linked sialic acids in sialylated N-glycans are especially important in monitoring the initiation and progression of diseases. However, the specific analysis of α-2,3-sialylated N-glycan linkage isomers remains challenging due to their extremely low abundance and technical limitations in separation and detection. Herein, we designed an integrated strategy that combines linkage-specific derivatization and a charge-sensitive separation method based on microfluidic chip capillary electrophoresis-mass spectrometry (microchip CE-MS) for specific analysis of α-2,3-sialylated N-glycan linkage isomers for the first time. The α-2,6- and α-2,3-sialic acids were selectively labeled with methylamine (MA) and N,N-dimethylethylenediamine (DMEN), respectively, which selectively makes α-2,3-sialylated N-glycans positively charged and realizes online purification, concentration, and discrimination of α-2,3-sialylated N-glycans from other N-glycans in microchip CE-MS. This new approach was demonstrated with standard multisialylated N-glycans, and it was found that only the α-2,3-sialylated N-glycans migrated and were detected in order according to the number of α-2,3-sialic acids. Finally, this strategy was successfully applied in highly sensitive profiling and reproducible quantitation of the serum α-2,3-sialylated N-glycome from ovarian cancer (OC) patients, where 7 of 33 detected α-2,3-sialylated N-glycans significantly changed in the OC group compared with healthy controls.


Assuntos
Eletroforese em Microchip , Polissacarídeos , Eletroforese Capilar , Humanos , Espectrometria de Massas , Ácidos Siálicos
10.
Anal Chem ; 93(17): 6682-6691, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33877808

RESUMO

The heterogeneity and low abundance of protein glycosylation present challenging barriers to the analysis of intact glycopeptides, which is key to comprehensively understanding the role of glycosylation in an organism. Efficient and specific enrichment of intact glycopeptides could help greatly with this problem. Here, we propose a new enrichment strategy using a boronic acid (BA)-functionalized mesoporous graphene-silica composite (denoted as GO@mSiO2-GLYMO-APB) for isolating intact glycopeptides from complex biological samples. The merits of this composite, including high surface area and synergistic effect from size exclusion functionality of mesoporous material, hydrophilic interaction of silica, and the reversible covalent binding with BA, enable the effective and specific enrichment of both intact N- and O-glycopeptides. The results from the enrichment performance of the strategy evaluated by standard glycoproteins and the application to global N- and O-glycosylation analyses in human serum indicate the robustness and potential of the strategy for intact glycopeptide analysis.


Assuntos
Grafite , Ácidos Borônicos , Glicopeptídeos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício
11.
Exp Eye Res ; 212: 108794, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656547

RESUMO

OBJECTIVE: Diabetic Keratopathy (DK) is one of the significant complications of type II diabetes (T2DM) with pathogenesis not yet clarified. Since hyperglycemia is able to change the protein components contained in plasma exosomes, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered as feasible to analyze the expression of plasma exosomal proteins in patients with T2DM and non-diabetic patients respectively, find critical biological markers, and explore the mechanism of DK as well as potential therapeutic targets. METHOD: Blood and clinical information of corneal epithelial injury in a diabetic group (the study group) and a non-diabetic group (the control group), who were patients admitted to the Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine from July 2020 to November 2020, were collected. The qEV size exclusion method was adopted to separate exosomes from plasma. The exosomes were then identified through transmission electron microscopy (TEM), nanoparticle tracking analyzer (NTA), and Western blot. The plasma exosomes of the study group and the control group were quantitatively analyzed by proteomics. A bioinformatics method is utilized to screen differential proteins and the expression of the differential proteins was verified by Western blot. RESULT: TEM indicated that the exosomes had a double-concave disc-like appearance, with a size of about 100 nm, and Western blot expressed as CD63 and TSG101. The plasma exosomes of the study group and the control group were analyzed by quantitative proteomics with a total number of 952 proteins detected of which 245 proteins existed in the ExoCarta exosomal protein database. Through adoption of P-value to screen credible differential proteins, the heat map displayed 28 differential proteins, 7 upregulated proteins, and 21 downregulated proteins; the volcano map displayed 7 upregulated proteins and 22 downregulated proteins; the PPI interaction map displayed 12 upregulated proteins and 18 downregulated proteins. Through GO enrichment analysis, it was identified that the differential protein participated in the main biological processes and was involved in regulating the cell's stimulation response to insulin, the insulin receptor signaling pathway, and the activity of glycosylphosphatidylinositol phospholipase D as well as anti-oxidation. The enriched cell components include main components such as exosomes, blood particles, and cytoplasm. KEGG enrichment analysis indicated that the target protein FLOT2 was mainly concentrated in insulin-related signaling pathways. Western blot indicated that the expression of FLOT2 in the study group was lower compared with the control group while the expression of Exo70 was higher. CONCLUSION: Proteomic analysis of the study group and the control group displayed a variety of proteins in plasma exosomes. The downregulated protein FLOT2 in the study group was closely related to the occurrence, development, and complication of DK in T2DM patients. The expression status of plasma FLOT2 protein in T2DM patients is expected to be a biomarker for diagnosing and monitoring of DK.


Assuntos
Doenças da Córnea/metabolismo , Diabetes Mellitus Tipo 2/complicações , Epitélio Corneano/metabolismo , Exossomos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Idoso , Biomarcadores/metabolismo , Cromatografia Líquida , Doenças da Córnea/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
12.
Mol Cell Proteomics ; 18(11): 2262-2272, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501225

RESUMO

N-glycosylation alteration has been reported in liver diseases. Characterizing N-glycopeptides that correspond to N-glycan structure with specific site information enables better understanding of the molecular pathogenesis of liver damage and cancer. Here, unbiased quantification of N-glycopeptides of a cluster of serum glycoproteins with 40-55 kDa molecular weight (40-kDa band) was investigated in hepatitis B virus (HBV)-related liver diseases. We used an N-glycopeptide method based on 18O/16O C-terminal labeling to obtain 82 comparisons of serum from patients with HBV-related hepatocellular carcinoma (HCC) and liver cirrhosis (LC). Then, multiple reaction monitoring (MRM) was performed to quantify N-glycopeptide relative to the protein content, especially in the healthy donor-HBV-LC-HCC cascade. TPLTAN205ITK (H5N5S1F1) and (H5N4S2F1) corresponding to the glycopeptides of IgA2 were significantly elevated in serum from patients with HBV infection and even higher in HBV-related LC patients, as compared with healthy donor. In contrast, the two glycopeptides of IgA2 fell back down in HBV-related HCC patients. In addition, the variation in the abundance of two glycopeptides was not caused by its protein concentration. The altered N-glycopeptides might be part of a unique glycan signature indicating an IgA-mediated mechanism and providing potential diagnostic clues in HBV-related liver diseases.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Glicopeptídeos/sangue , Glicoproteínas/sangue , Hepatite B/complicações , Imunoglobulina A/sangue , Neoplasias Hepáticas/diagnóstico , Proteoma/análise , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Glicosilação , Hepatite B/virologia , Vírus da Hepatite B/isolamento & purificação , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/virologia , Polissacarídeos/metabolismo
13.
J Proteome Res ; 19(6): 2217-2225, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248692

RESUMO

Exosomes, a subtype of extracellular vesicles secreted by mammalian cells with a typical size range of 30-150 nm, have been implicated in many biological processes as intercellular communication carriers. The isolation of exosomes is an essential and challenging step before subsequent analysis and functional studies, due to the complexity of body fluids, as well as the small size and low density of exosomes. Ultracentrifugation (UC) and size exclusion chromatography (SEC) are two methods that have been extensively used for exosomes isolation in biological studies in recent years. In this work, we compared the characteristics of urinary exosomes extracted with SEC and UC methods in detail. Results showed that the SEC isolation method was superior to UC in the recovery of exosomal particles and proteins. The results of proteomics analysis showed that more purified exosomes were extracted with the SEC method. We also observed that parts of exosomes were ruptured and precipitated insufficiently during UC isolations. It not only led to a low recovery of exosome proteins but also resulted in a considerable loss of exosomal particles. Moreover, the exosomal rupture and particle loss in UC could not be avoided by resuspension of the exosomal particles. Our results also showed that exosomes from SEC purifications possessed a high internalization capability from 4 to 6 h when incubated with EA.hy926 and HCV29 cell lines.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Cromatografia em Gel , Proteômica , Ultracentrifugação
14.
Anal Chem ; 92(12): 8315-8322, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32433867

RESUMO

Protein N-terminal acetylation (Nα-acetylation) is one of the most common modifications in both eukaryotes and prokaryotes. Although studies have shown that Nα-acetylation plays important roles in protein assembly, stability, and location, the physiological role has not been fully elucidated. Therefore, a robust and large-scale analytical method is important for a better understanding of Nα-acetylation. Here, an enrichment strategy was presented based on LysN digestion and amine-reactive resin capture to study naturally acetylated protein N termini. Since LysN protease cleaves at the amino-terminus of the lysine residue, all resulting peptides except naturally acetylated N-terminal peptides contain free amino groups and can be removed by coupling with AminoLink Resin. Therefore, the naturally acetylated N-terminal peptides were left in solution and enriched for further liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The method was very simple and fast, which contained no additional chemical derivatization except protein reduction and alkylation necessarily needed in bottom-up proteomics. It could be used to study acetylated N termini from complex biological samples without bias toward different peptides with various physicochemical properties. The enrichment specificity was above 99% when it was applied in HeLa cell lysates. Neo-N termini generated by endogenous degradation could be directly distinguished without the use of stable-isotope labeling because no chemical derivatization was introduced in this method. Furthermore, this method was highly complementary to the traditional analytical methods for protein N termini based on trypsin only with ArgC-like activity. Therefore, the described method was beneficial to naturally acetylated protein N termini profiling.


Assuntos
Aminas/metabolismo , Lisina/metabolismo , Resinas Sintéticas/metabolismo , Acetilação , Aminas/química , Células HeLa , Humanos , Lisina/química , Resinas Sintéticas/análise
15.
Anal Chem ; 92(1): 867-874, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31751117

RESUMO

Protein N-glycosylation is ubiquitous in the brain and is closely related to cognition and memory. Alzheimer's disease (AD) is a multifactorial disorder that lacks a clear pathogenesis and treatment. Aberrant N-glycosylation has been suggested to be involved in AD pathology. However, the systematic variations in protein N-glycosylation and their roles in AD have not been thoroughly investigated due to technical challenges. Here, we applied multilayered N-glycoproteomics to quantify the global protein expression levels, N-glycosylation sites, N-glycans, and site-specific N-glycopeptides in AD (APP/PS1 transgenic) and wild-type mouse brains. The N-glycoproteomic landscape exhibited highly complex site-specific heterogeneity in AD mouse brains. The generally dysregulated N-glycosylation in AD, which involved proteins such as glutamate receptors as well as fucosylated and oligomannose glycans, were explored by quantitative analyses. Furthermore, functional studies revealed the crucial effects of N-glycosylation on proteins and neurons. Our work provides a systematic multilayered N-glycoproteomic strategy for AD and can be applied to diverse biological systems.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Animais , Química Encefálica , Linhagem Celular , Glicopeptídeos/análise , Glicoproteínas/química , Glicosilação , Humanos , Camundongos , Camundongos Transgênicos , Polissacarídeos/análise , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
16.
FASEB J ; 33(11): 13040-13050, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31487196

RESUMO

Embryonic stem cells (ESCs) are pluripotent stem cells with the ability to self-renew and to differentiate into any cell types of the 3 germ layers. Recent studies have demonstrated that there is a strong connection between mitochondrial function and pluripotency. Here, we report that methyltransferase like (Mettl) 17, identified from the clustered regularly interspaced short palindromic repeats knockout screen, is required for proper differentiation of mouse embryonic stem cells (mESCs). Mettl17 is located in mitochondria through its N-terminal targeting sequence and specifically interacts with 12S mitochondrial ribosomal RNA (mt-rRNA) as well as small subunits of mitochondrial ribosome (MSSUs). Loss of Mettl17 affects the stability of both 12S mt-rRNA and its associated proteins of MSSUs. We further showed that Mettl17 is an S-adenosyl methionine (SAM)-binding protein and regulates mitochondrial ribosome function in a SAM-binding-dependent manner. Loss of Mettl17 leads to around 70% reduction of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, revealing the first regulator of the m4C840 and indicating a crosstalk between the 2 nearby modifications. The defects of mitochondrial ribosome caused by deletion of Mettl17 lead to the impaired translation of mitochondrial protein-coding genes, resulting in significant changes in mitochondrial oxidative phosphorylation and cellular metabolome, which are important for mESC pluripotency.-Shi, Z., Xu, S., Xing, S., Yao, K., Zhang, L., Xue, L., Zhou, P., Wang, M., Yan, G., Yang, P., Liu, J., Hu, Z., Lan, F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes.


Assuntos
Genes Mitocondriais , Metiltransferases/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Ribossômico/genética , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , S-Adenosilmetionina/metabolismo
17.
J Sep Sci ; 43(20): 3913-3920, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835449

RESUMO

Recently, significant research efforts have been devoted to the development of technology for large-scale analysis of protein-protein interactions. Herein, a comprehensive method by coupling the first-dimension strong anion exchange chromatography with the second-dimension reversed-phase liquid chromatography via immunoprecipitation technique and high-resolution mass spectrometry analysis was developed for analyzing protein-protein interactions. After two-dimensional liquid chromatography separation, 108 fractions were obtained in one experiment. Immunoglobulin G from human serum was used as a model of an interacting protein. As a result, 919 proteins in these fractions were identified to interact with immunoglobulin G. By searching STRING database and data analysis, 27 of 919 proteins were inferred to directly interact with immunoglobulin G. Moreover, important target proteins that interacted with immunoglobulin G were mapped in the two-dimensional liquid chromatography system, which facilitated selection of these proteins from specific fractions. These results demonstrated that the proposed method can be useful for large-scale investigation of protein-protein interactions and as an advanced tool for the isolation of target proteins.


Assuntos
Imunoglobulina G/química , Cromatografia por Troca Iônica , Cromatografia de Fase Reversa , Células HeLa , Humanos , Imunoglobulina G/sangue , Imunoprecipitação , Espectrometria de Massas , Ligação Proteica
18.
Anal Chem ; 91(10): 6498-6506, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31025853

RESUMO

Analysis of protein C termini is very important for functional annotations of proteomes, while proteome-wide C termini analysis still poses substantial challenges. Here we described a simple and robust strategy for specific isolation of protein C termini based on LysC digestion and site-selective dimethylation to deplete N-terminal and internal peptides by scavenger materials. The performance of LysC digestion and conditions of site-selective dimethylation and resin coupling were discussed in detail. Then the strategy was successfully applied to the characterization of protein C termini of HeLa cells. A total of 781 protein C termini were identified with a 300 µg digest in our study, among which 38.9% were actually not identifiable using current trypsin digestion-based methods due to their inappropriate peptide length for MS analysis, indicating that our method was highly complementary to the existing methods. The enrichment procedure was rapid and easy to operate and could afford a very good identification efficiency by obtaining the largest C termini data set of the human proteome with the least sample loading. This method was without bias toward physicochemical properties of peptides. Moreover, a peptide-centric database was first introduced to analyze protein C termini, which effectively improved the accuracy and speed of the database search. Therefore, our method can be used to effectively and selectively isolate protein C termini and contributes to the global annotation of C terminomes.


Assuntos
Proteína C/química , Serina Endopeptidases/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
19.
Anal Chem ; 91(15): 9986-9992, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31313914

RESUMO

Protein sialylation is ubiquitous and essential in a wide range of biological processes. Herein, a mass defect-based chemical-directed proteomics method (MdCDPM) was presented for targeted analysis of intact sialylglycopeptides (SGPs). The process starts by specific oxidation of dihydroxy in sialic acid to aldehyde, which was then chemically labeled by two arginine isotopologues (Arg-15N4 and Arg-D4, differs by 36 mDa). The equally mixed precursor partners, spacing tens of mDa apart, enable the direct recognition of SGPs in MS1 level and benefit the subsequent targeted MS2 characterization. The mass envelope of two labeled forms falling into a narrow m/z window strengthens recognition uniqueness greatly, and the proposed 1:1 intensity ratio of doublets will not be readily distorted. More important, such subtle mass differences permit multiple sialic acids labeling without additional complexity of precursor patterns. Also, the partner m/z shifts detail the number of sialic acids contained in the precursor species. By applying MdCDPM, femtomole quantities of SGPs could be detected from total cell lysates, even at a signal-to-noise ratio of as low as 3:1. In addition, assays were performed to estimate the false positive rate and demonstrated high confidence of MdCDPM. Furthermore, it was designed and successfully exploited to analyze SGPs in human serum, which highlighted the feasibility of this strategy for biological applications.


Assuntos
Glicopeptídeos/análise , Ácido N-Acetilneuramínico/química , Proteômica/métodos , Arginina/química , Cromatografia Líquida de Alta Pressão , Glicopeptídeos/sangue , Humanos , Marcação por Isótopo , Oxirredução , Espectrometria de Massas em Tandem
20.
Anal Chem ; 91(8): 5235-5243, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30892874

RESUMO

4-Hydroxy-2-nonenal (HNE)-modified proteins are closely associated with cellular functions and diseases, so qualitative and quantitative analysis of HNE-modified proteins is very necessary in order to further understand their structures and molecular functions. In this study, we described a six-plex isobaric labeling affinity purification (SiLAP) method based on the interaction of aminoxyTMT six-plex and anti-TMT antibody resin to identify and quantify the HNE modifications simultaneously. The labeling efficiency, ionization efficiency of the aminoxyTMT-tagged peptides, and reliability of the quantification method were investigated in detail. The mass tags were labeled on the modification sites, which could also significantly increase the ionization efficiency, contributing to site-specific identification and quantification of HNE peptides. The SiLAP strategy possessed high sensitivity, accuracy, and good reproducibility to qualitatively and quantitatively analyze HNE-modified proteins/peptides, which could be used to analyze both endogenously and exogenously modified proteins. Using the SiLAP strategy, 2257 HNE-modified peptides mapping 1121 proteins were collectively quantified, which was the largest data set of HNE-modified proteins with detailed modification sites, and 101 proteins were found to be differentially modified by HNE in six liver cell lines. At the same time, 33 endogenously HNE-modified peptides mapping 33 proteins were identified with modification sites.


Assuntos
Aldeídos/química , Proteínas de Neoplasias/análise , Aldeídos/isolamento & purificação , Células Hep G2 , Humanos , Fígado/química , Modelos Moleculares , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA