Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Membr Biol ; 257(1-2): 25-36, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285125

RESUMO

Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.


Assuntos
Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Camundongos , Ratos , Humanos , Coelhos , Animais , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Ventrículos do Coração , Mamíferos/metabolismo , Cálcio/metabolismo
2.
Circ Res ; 130(5): 711-724, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35086342

RESUMO

BACKGROUND: Oxidative stress in cardiac disease promotes proarrhythmic disturbances in Ca2+ homeostasis, impairing luminal Ca2+ regulation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the RyR2 (ryanodine receptor), and increasing channel activity. However, exact mechanisms underlying redox-mediated increase of RyR2 function in cardiac disease remain elusive. We tested whether the oxidoreductase family of proteins that dynamically regulate the oxidative environment within the SR are involved in this process. METHODS: A rat model of hypertrophy induced by thoracic aortic banding (TAB) was used for ex vivo whole heart optical mapping and for Ca2+ and reactive oxygen species imaging in isolated ventricular myocytes (VMs). RESULTS: The SR-targeted reactive oxygen species biosensor ERroGFP showed increased intra-SR oxidation in TAB VMs that was associated with increased expression of Ero1α (endoplasmic reticulum oxidoreductase 1 alpha). Pharmacological (EN460) or genetic Ero1α inhibition normalized SR redox state, increased Ca2+ transient amplitude and SR Ca2+ content, and reduced proarrhythmic spontaneous Ca2+ waves in TAB VMs under ß-adrenergic stimulation (isoproterenol). Ero1α overexpression in Sham VMs had opposite effects. Ero1α inhibition attenuated Ca2+-dependent ventricular tachyarrhythmias in TAB hearts challenged with isoproterenol. Experiments in TAB VMs and human embryonic kidney 293 cells expressing human RyR2 revealed that an Ero1α-mediated increase in SR Ca2+-channel activity involves dissociation of intraluminal protein ERp44 (endoplasmic reticulum protein 44) from the RyR2 complex. Site-directed mutagenesis and molecular dynamics simulations demonstrated a novel redox-sensitive association of ERp44 with RyR2 mediated by intraluminal cysteine 4806. ERp44-RyR2 association in TAB VMs was restored by Ero1α inhibition, but not by reducing agent dithiothreitol, as hypo-oxidation precludes formation of covalent bond between RyR2 and ERp44. CONCLUSIONS: A novel axis of intraluminal interaction between RyR2, ERp44, and Ero1α has been identified. Ero1α inhibition exhibits promising therapeutic potential by stabilizing RyR2-ERp44 complex, thereby reducing spontaneous Ca2+ release and Ca2+-dependent tachyarrhythmias in hypertrophic hearts, without causing hypo-oxidative stress in the SR.


Assuntos
Cardiopatias , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Cardiopatias/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Chemistry ; 29(19): e202203748, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717359

RESUMO

Gain of aromaticity or relief of antiaromaticity along a reaction path are important factors to consider in mechanism studies. Analysis of such changes along potential energy surfaces has historically focused on reactions in the electronic ground state (S0 ), but can also be used for excited states. In the lowest ππ* states, the electron counts for aromaticity and antiaromaticity follow Baird's rule where 4n π-electrons indicate aromaticity and 4n+2 π-electrons antiaromaticity. Yet, there are also cases where Hückel's rule plays a role in the excited state. The electron count reversals of Baird's rule compared to Hückel's rule explain many altered physicochemical properties upon excitation of (hetero)annulene derivatives. Here we illustrate how the gain of excited-state aromaticity (ESA) and relief of excited-state antiaromaticity (ESAA) have an impact on photoreactivity and photostability. Emphasis is placed on recent findings supported by the results of quantum chemical calculations, and photoreactions in a wide variety of areas are covered.

4.
Circ Res ; 128(4): 455-470, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33334123

RESUMO

RATIONALE: We recently discovered pivotal contributions of stress kinase JNK2 (c-Jun N-terminal kinase isoform 2) in increased risk of atrial fibrillation through enhanced diastolic sarcoplasmic reticulum (SR) calcium (Ca2+) leak via RyR2 (ryanodine receptor isoform 2). However, the role of JNK2 in the function of the SERCA2 (SR Ca2+-ATPase), essential in maintaining SR Ca2+ content cycling during each heartbeat, is completely unknown. OBJECTIVE: To test the hypothesis that JNK2 increases SERCA2 activity SR Ca2+ content and exacerbates an arrhythmic SR Ca2+ content leak-load relationship. METHODS AND RESULTS: We used confocal Ca2+ imaging in myocytes and HEK-RyR2 (ryanodine receptor isoform 2-expressing human embryonic kidney 293 cells) cells, biochemistry, dual Ca2+/voltage optical mapping in intact hearts from alcohol-exposed or aged mice (where JNK2 is activated). We found that JNK2, but not JNK1 (c-Jun N-terminal kinase isoform 1), increased SERCA2 uptake and consequently elevated SR Ca2+ content load. JNK2 also associates with and phosphorylates SERCA2 proteins. JNK2 causally enhances SERCA2-ATPase activity via increased maximal rate, without altering Ca2+ affinity. Unlike the CaMKII (Ca2+/calmodulin-dependent kinase II)-dependent JNK2 action in SR Ca2+ leak, JNK2-driven SERCA2 function was CaMKII independent (not prevented by CaMKII inhibition). With CaMKII blocked, the JNK2-driven SR Ca2+ loading alone did not significantly raise leak. However, with JNK2-CaMKII-driven SR Ca2+ leak present, the JNK2-enhanced SR Ca2+ uptake limited leak-induced reduction in SR Ca2+, normalizing Ca2+ transient amplitude, but at a higher arrhythmogenic SR Ca2+ leak. JNK2-specific inhibition completely normalized SR Ca2+ handling, attenuated arrhythmic Ca2+ activities, and alleviated atrial fibrillation susceptibility in aged and alcohol-exposed myocytes and intact hearts. CONCLUSIONS: We have identified a novel JNK2-induced activation of SERCA2. The dual action of JNK2 in CaMKII-dependent arrhythmic SR Ca2+ leak and a CaMKII-independent uptake exacerbates atrial arrhythmogenicity, while helping to maintain normal levels of Ca2+ transients and heart function. JNK2 modulation may be a novel therapeutic target for atrial fibrillation prevention and treatment.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Potenciais de Ação , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Circ Res ; 127(2): e28-e43, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32347164

RESUMO

RATIONALE: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE: We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS: Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS: ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.


Assuntos
Nó Atrioventricular/metabolismo , Frequência Cardíaca , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Nó Atrioventricular/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína alfa-5 de Junções Comunicantes
6.
Ecotoxicol Environ Saf ; 233: 113318, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182799

RESUMO

Carboxin is a heterocyclic systemic fungicide, mainly used to prevent and control grain smut and wheat rust. Although its mammalian toxicity has been reported, its toxicity to acute exposure to aquatic animals is unknown. In our study, we used zebrafish as aquatic organisms to study Carboxin toxicity. Carboxin can cause developmental toxicity and cardiotoxicity in zebrafish embryos. Histopathological staining of cardiac sections reveals structural changes in zebrafish hearts, and fluorescence quantitative PCR results shows the heart developmental genes mRNA expression levels were disrupted significantly. Besides, carboxin can also cause oxidative stress and reactive oxygen species (ROS) accumulation in zebrafish embryos. The accumulation of ROS causes mitochondrial damage, which is where ATP energy is produced. So ATPase activities and gene expression level were measured and significantly decreased after exposure to carboxin. From the confocal images, the number of blood cells in the heart were decreased significantly after carboxin exposure. Besides, Carboxin exposure can inhibit myocardial cell proliferation. These are all causes to the heart failure, eventually leading to embryos death.


Assuntos
Cardiotoxicidade , Peixe-Zebra , Animais , Carboxina/metabolismo , Cardiotoxicidade/metabolismo , Embrião não Mamífero/metabolismo , Estresse Oxidativo , Peixe-Zebra/metabolismo
7.
J Mol Cell Cardiol ; 158: 72-81, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048725

RESUMO

BACKGROUND: Both gap junctional remodeling and interstitial fibrosis have been linked to impaired electrical conduction velocity (CV) and fatal ventricular arrhythmias in nonischemic heart failure (HF). However, the arrhythmogenic role of the ventricular gap junctional Cx43 in nonischemic HF remains in debate. Here, we assessed this in a newly developed arrhythmogenic canine model of nonischemic HF. METHODS AND RESULTS: Nonischemic HF was induced in canines by combined aortic valve insufficiency and aortic constriction. Left ventricular (LV) myocardium from HF dogs showed similar pathological changes to that of humans. HF dogs had reduced LV function, widened QRS complexes, and spontaneous nonsustained ventricular tachycardia. CV was measured in intact LV epicardium with high-density grid mapping. Total (Cx43-T) and nonphosphorylated Cx43 (Cx43-NP) and histological interstitial fibrosis were assessed from these mapped LV tissues. Longitudinal CV, which was slowed in HF (49 ± 1 vs. 65 ± 2 cm/s in Ctl), was positively correlated with reduced total junctional Cx43 and negatively correlated with markedly increased junctional Cx43-NP (2-fold) in HF. Cx43 dephosphorylation in HF was associated with enhanced colocalization of PP2A at the level of Cx43. Unchanged action potential upstroke and transverse CV were associated with unaltered Cx43 lateralization and interstitial fibrosis in the nonischemic HF canine LV. CONCLUSION: Our unique arrhythmogenic canine model of HF resembles human nonischemic HF (prior to the end stage). Cx43 remodeling occurs prior to the structural remodeling (with lack of fibrosis) in HF and it is crucial in slowed CV and ventricular arrhythmia development. Our findings suggest that altered Cx43 alone is arrhythmogenic and modulation of Cx43 has the anti-arrhythmic therapeutic potential for HF patients.


Assuntos
Conexina 43/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Taquicardia Ventricular/complicações , Taquicardia Ventricular/metabolismo , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/metabolismo , Fibrilação Ventricular/complicações , Fibrilação Ventricular/metabolismo , Potenciais de Ação , Animais , Modelos Animais de Doenças , Cães , Condutividade Elétrica , Feminino , Fibrose , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Fosforilação , Função Ventricular Esquerda
8.
Pflugers Arch ; 473(3): 521-531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33594499

RESUMO

The transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective monovalent cation channel belonging to the TRP channel superfamily. TRPM4 is widely expressed in various tissues and most abundantly expressed in the heart. TRPM4 plays a critical role in cardiac conduction. Patients carrying a gain-of-function or loss-of-function mutation of TRPM4 display impaired cardiac conduction. Knockout or over-expression of TRPM4 in mice recapitulates conduction defects in patients. Moreover, recent studies have indicated that TRPM4 plays a role in hypertrophy and heart failure. Whereas the role of TRPM4 mediated by cardiac myocytes has been well investigated, little is known about TRPM4 and its role in cardiac fibroblasts. Here we show that in human left ventricular fibroblasts, TRPM4 exhibits typical Ca2+-activation characteristics, linear current-voltage (I-V) relation, and monovalent permeability. TRPM4 currents recorded in fibroblasts from heart failure patients (HF) are more than 2-fold bigger than those from control individuals (CTL). The enhanced functional TRPM4 in HF is not resulted from changed channel properties, as TRPM4 currents from both HF and CTL fibroblasts demonstrate similar sensitivity to intracellular calcium activation and extracellular 9-phenanthrol (9-phen) blockade. Consistent with enhanced TRPM4 activity, the protein level of TRPM4 is about 2-fold higher in HF than that of CTL hearts. Moreover, TRPM4 current in CTL fibroblasts is increased after 24 hours of TGFß1 treatment, implying that TRPM4 in vivo may be upregulated by fibrogenesis promotor TGFß1. The upregulated TRPM4 in HF fibroblasts suggests that TRPM4 may play a role in cardiac fibrogenesis under various pathological conditions.


Assuntos
Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Canais de Cátion TRPM/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Regulação para Cima
9.
Pflugers Arch ; 473(3): 351-362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33638007

RESUMO

Pathological remodeling includes alterations of ion channel function and calcium homeostasis and ultimately cardiac maladaptive function during the process of disease development. Biochemical assays are important approaches for assessing protein abundance and post-translational modification of ion channels. Several housekeeping proteins are commonly used as internal controls to minimize loading variabilities in immunoblotting protein assays. Yet, emerging evidence suggests that some housekeeping proteins may be abnormally altered under certain pathological conditions. However, alterations of housekeeping proteins in aged and diseased human hearts remain unclear. In the current study, immunoblotting was applied to measure three commonly used housekeeping proteins (ß-actin, calsequestrin, and GAPDH) in well-procured human right atria (RA) and left ventricles (LV) from diabetic, heart failure, and aged human organ donors. Linear regression analysis suggested that the amounts of linearly loaded total proteins and quantified intensity of total proteins from either Ponceau S (PS) blot-stained or Coomassie Blue (CB) gel-stained images were highly correlated. Thus, all immunoblotting data were normalized with quantitative CB or PS data to calibrate potential loading variabilities. In the human heart, ß-actin was reduced in diabetic RA and LV, while GAPDH was altered in aged and diabetic RA but not LV. Calsequestrin, an important Ca2+ regulatory protein, was significantly changed in aged, diabetic, and ischemic failing hearts. Intriguingly, expression levels of all three proteins were unchanged in non-ischemic failing human LV. Overall, alterations of human housekeeping proteins are heart chamber specific and disease context dependent. The choice of immunoblotting loading controls should be carefully evaluated. Usage of CB or PS total protein analysis could be a viable alternative approach for some complicated pathological specimens.


Assuntos
Envelhecimento/metabolismo , Biomarcadores/análise , Genes Essenciais/fisiologia , Cardiopatias/metabolismo , Immunoblotting/métodos , Actinas/análise , Actinas/biossíntese , Idoso , Animais , Calsequestrina/análise , Calsequestrina/biossíntese , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/análise , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Coelhos
10.
Pharmacol Res ; 164: 105375, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33316384

RESUMO

Excessive binge alcohol intake is a common drinking pattern in humans, especially during holidays. Cessation of the binge drinking often leads to aberrant withdrawal behaviors, as well as serious heart rhythm abnormalities (clinically diagnosed as Holiday Heart Syndrome (HHS)). In our HHS mouse model with well-characterized binge alcohol withdrawal (BAW)-induced heart phenotypes, BAW leads to anxiety-like behaviors and cognitive impairment. We have previously reported that stress-activated c-Jun NH(2)-terminal kinase (JNK) plays a causal role in BAW-induced heart phenotypes. In the HHS brain, we found that activation of JNK2 (but not JNK1 and JNK3) in the prefrontal cortex (PFC), but not hippocampus and amygdala, led to anxiety-like behaviors and impaired cognition. DNA methylation mediated by a crucial DNA methylation enzyme, DNA methyltransferase1 (DNMT1), is known to be critical in alcohol-associated behavioral deficits. In HHS mice, JNK2 in the PFC (but not hippocampus and amygdala) causally enhanced total genomic DNA methylation via increased DNMT1 expression, which was regulated by enhanced binding of JNK downstream transcriptional factor c-JUN to the DNMT1 promoter. JNK2-specific inhibition either by an inhibitor JNK2I or JNK2 knockout completely offset c-JUN-regulated DNMT1 upregulation and restored the level of DNA methylation in HHS PFC to the baseline levels seen in sham controls. Strikingly, either JNK2-specific inhibition or genetic JNK2 depletion or DNMT1 inhibition (by an inhibitor 5-Azacytidine) completely abolished BAW-evoked behavioral deficits. In conclusion, our studies revealed a novel mechanism by which JNK2 drives BAW-evoked behavioral deficits through a DNMT1-regulated DNA hypermethylation. JNK2 could be a novel therapeutic target for alcohol withdrawal treatment and/or prevention.


Assuntos
Comportamento Animal , Consumo Excessivo de Bebidas Alcoólicas , Metilação de DNA , Proteína Quinase 9 Ativada por Mitógeno , Síndrome de Abstinência a Substâncias , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/enzimologia , Ansiedade/genética , Consumo Excessivo de Bebidas Alcoólicas/enzimologia , Consumo Excessivo de Bebidas Alcoólicas/genética , Cognição , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/genética , Córtex Pré-Frontal/metabolismo , Síndrome de Abstinência a Substâncias/enzimologia , Síndrome de Abstinência a Substâncias/genética
11.
Ecotoxicol Environ Saf ; 224: 112696, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34455182

RESUMO

Benoxacor (BN) is a highly effective antidote of dichloroacetamide herbicides generally used to protect crops from herbicidal damage. As a commonly used agrochemical, this herbicide antidote is continuously discharged in watercourses thus causing toxicity to aquatic organisms, and ultimately leading to contamination of the food chain. To date, its potential toxicity to the cardiac development of aquatic organisms has not been evaluated. In the present study, we have selected the zebrafish as a model to study the impact of BN on embryonic developmental and cardiac toxicity. The zebrafish embryos were exposed in 0.5, 1.0 and 2.0 mg/L BN from 5.5 to 72 h post-fertilization (hpf). The results indicated that the exposure to BN led to increased mortality and diminished heart and hatching rates in the embryos. BN exposure also brought pericardial edema (PE) and linear stretching of heart. Besides, exposure to BN induced an excessive accumulation of reactive oxygen species (ROS) in the zebrafish embryos and abnormal activities of the antioxidant enzymes, including catalase (CAT) and malondialdehyde (MDA). Moreover, exposure to BN caused serious cardiac toxicity of the embryos, accompanied by abnormality of heart development- and apoptosis-related genes. Surprisingly, astaxanthin (ASTA), as a common antioxidant, was found to be able to partially rescue the cardiac toxicity caused by BN, which indicated that ROS are probably the major reason for the resulting cardiotoxicity in zebrafish embryos. Our results suggest the need for a comprehensive safety evaluation of the regular consumption of benoxacor, which provides scientific basis for the development of health standards and assessment of potential risk in aquatic organisms or even human.

12.
Circ Res ; 122(6): 821-835, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29352041

RESUMO

RATIONALE: Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE: To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS: We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS: We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.


Assuntos
Fibrilação Atrial/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Humanos , Masculino , Camundongos , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
13.
Angew Chem Int Ed Engl ; 58(44): 15675-15679, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31479175

RESUMO

Due to their ubiquity in nature and frequent use in organic electronic materials, benzothiophenes are highly sought after. Here we set out an unprecedented procedure for the formation of benzothiophenes by the twofold vicinal C-H functionalization of arenes that does not require metal catalysis. This one-pot annulation proceeds through an interrupted Pummerer reaction/[3,3]-sigmatropic rearrangement/cyclization sequence to deliver various benzothiophene products. The procedure is particularly effective for the rapid synthesis of benzothiophenes from non-prefunctionalized polyaromatic hydrocarbons (PAHs).

14.
J Mol Cell Cardiol ; 114: 105-115, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146153

RESUMO

BACKGROUND: The stress kinase c-jun N-terminal kinase (JNK) is critical in the pathogenesis of cardiac diseases associated with an increased incidence of atrial fibrillation (AF), the most common arrhythmia in the elderly. We recently discovered that JNK activation is linked to the loss of gap junction connexin43 (Cx43) and enhanced atrial arrhythmogenicity. However, direct evidence for JNK-mediated impairment of intercellular coupling (cell-cell communication) in the intact aged atrium is lacking, as is evidence for whether and how JNK suppresses Cx43 in the aged human atrium. METHODS AND RESULTS: JNK activity in human atrial samples is correlated with both reduced Cx43 expression and increasing age. Using a unique technique of optical mapping space constant measurement, we found that impaired intercellular coupling and reduced Cx43 were linked to enhanced activation of JNK in intact aged rabbit atria. These JNK-associated alterations were further confirmed in naturally JNK activated aged mice and in cardiac-specific inducible MKK7D (JNK upstream activator) young mice. Moreover, JNK inhibition, using either JNK specific inhibitors in aged wild-type (WT) mice and JNK activator anisomycin-treated young WT mice or JNK1/2 dominant-negative mice with genetically inhibited cardiac JNK activity, completely eliminated these functional abnormalities. Furthermore, we discovered for the first time that long-term JNK activation downregulates Cx43 expression via c-jun suppressed transcriptional activity of the Cx43 gene promoter. CONCLUSION: Our results demonstrate that JNK is a critical regulator of Cx43 expression, and that augmented JNK activation in aged atria downregulates Cx43 to impair cell-cell communication and promote the development of AF. JNK inhibition may represent a promising therapeutic approach to prevent or treat AF in the elderly.


Assuntos
Envelhecimento/patologia , Fibrilação Atrial/genética , Conexina 43/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Animais , Fibrilação Atrial/fisiopatologia , Células Cultivadas , Conexina 43/metabolismo , Regulação para Baixo/genética , Fenômenos Eletrofisiológicos , Ativação Enzimática , Átrios do Coração/enzimologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
15.
Rev Physiol Biochem Pharmacol ; 172: 77-100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27848025

RESUMO

Stress-response kinases, the mitogen-activated protein kinases (MAPKs) are activated in response to the challenge of a myriad of stressors. c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERKs), and p38 MAPKs are the predominant members of the MAPK family in the heart. Extensive studies have revealed critical roles of activated MAPKs in the processes of cardiac injury and heart failure and many other cardiovascular diseases. Recently, emerging evidence suggests that MAPKs also promote the development of cardiac arrhythmias. Thus, understanding the functional impact of MAPKs in the heart could shed new light on the development of novel therapeutic approaches to improve cardiac function and prevent arrhythmia development in the patients. This review will summarize the recent findings on the role of MAPKs in cardiac remodeling and arrhythmia development and point to the critical need of future studies to further elucidate the fundamental mechanisms of MAPK activation and arrhythmia development in the heart.


Assuntos
Arritmias Cardíacas/enzimologia , Sistema de Sinalização das MAP Quinases , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Humanos
16.
Chemistry ; 24(14): 3520-3527, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29266496

RESUMO

2-Aryltellurophenols substituted in the aryltelluro or phenolic parts of the molecule were prepared by lithiation of the corresponding tetrahydropyran-protected 2-bromophenol, followed by reaction with a suitable diaryl ditelluride then deprotection. In a two-phase system containing N-acetylcysteine as a co-antioxidant in the aqueous phase, all of the compounds quenched lipid peroxyl radicals more efficiently than α-tocopherol, with three to five-fold longer inhibition times. Thus, these compounds offer better and longer-lasting antioxidant protection than recently prepared alkyltellurophenols. Compounds with electron-donating para substituents in the aryltelluro or phenolic part of the molecule showed the best results. The mechanism for quenching peroxyl radicals was considered and discussed with respect to the calculated O-H bond-dissociation energies, deuterium-labelling experiments and studies of thiol consumption in the aqueous phase.

17.
Chemistry ; 23(60): 15080-15088, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28857289

RESUMO

Phenolic 2,3-dihydrobenzo[b]selenophene antioxidants bearing an OH-group ortho (9), meta (10, 11) and para (8) to the Se were prepared by seleno-Claisen rearrangement/intramolecular hydroselenation. meta-Isomer (11) was studied by X-ray crystallography. The radical-trapping activity and regenerability of compounds 8-11 were evaluated using a two-phase system in which linoleic acid was undergoing peroxidation in the lipid phase while regeneration of the antioxidant by co-antioxidants (N-acetylcysteine, glutathione, dithiothreitol, ascorbic acid, tris(carboxyethyl)phosphine hydrochloride) was ongoing in the aqueous layer. Compound 9 quenched peroxyl radicals more efficiently than α-tocopherol. It also provided the most long-lasting antioxidant protection. With thiol co-antioxidants it could inhibit peroxidation for more than five-fold longer than the natural product. Regeneration was more efficient when the aqueous phase pH was slightly acidic. Since calculated O-H bond dissociation energies for 8-11 were substantially larger than for α-tocopherol, an antioxidant mechanism involving O-atom transfer from peroxyl to selenium was proposed. The resulting phenolic selenoxide/alkoxyl radical would then exchange a hydrogen atom in a solvent cage before antioxidant regeneration at the aqueous lipid interphase.

19.
J Org Chem ; 82(1): 313-321, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27997177

RESUMO

Novel azo-bis-ebselen compounds 7 were prepared by reduction of 7-nitro-2-aryl-1,2-benzisoselenazol-3(2H)-ones 3 and 6 with sodium benzenetellurolate, NaTeC6H5, and by reaction of 2-bromo-3-nitrobenzamides with Na2Se2. The X-ray structure of 7b showed that the molecule, due to strong intramolecular secondary Se···N interactions, is completely planar. Azo-compounds 7 upon further reaction with NaTeC6H5 were reductively cleaved to provide 2 equiv of the corresponding aromatic amine. The weak Se-N bond was not stable enough to survive the reaction conditions, and diselenides 8 were isolated after workup. Whereas azo-bis-ebselens 7 were poor mimics of the glutathione peroxidase (GPx)-enzymes, nitroebselens 3, 6, and 11b and diselenides 8 were 3-6-fold more active than ebselen. Based on 77Se NMR spectroscopy, a catalytic cycle for diselenide 8b, involving aminoebselen 14, was proposed. As assessed by chemiluminescence measurements, the good GPx-mimics could reduce production of reactive oxygen species (ROS) in stimulated human mononuclear cells more efficiently than Trolox. No toxic effects of the compounds were seen in MC3T3-cells at 25 µM.


Assuntos
Azóis/farmacologia , Compostos Organosselênicos/farmacologia , Animais , Azóis/síntese química , Azóis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Citoproteção/efeitos dos fármacos , Isoindóis , Camundongos , Modelos Moleculares , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Teoria Quântica , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA