Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 193(9): 1208-1222, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328100

RESUMO

Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.


Assuntos
Fibrose Oral Submucosa , Humanos , Ratos , Animais , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Transição Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliais/metabolismo
2.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395388

RESUMO

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Assuntos
Osteoartrite , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/metabolismo , RNA/genética
3.
Acta Biomater ; 157: 639-654, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509401

RESUMO

Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-ß1 (TGF-ß1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1ß (IL-1ß)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.


Assuntos
Fibrose Oral Submucosa , Ratos , Animais , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Mucosa Bucal , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Colágeno/farmacologia , Colágeno/metabolismo
4.
Bioact Mater ; 15: 68-81, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386354

RESUMO

Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties. The present study covalently bonded polyphosphate onto a collagen scaffold (P-CS) by crosslinking. The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model. This improvement is attributed to the increase in hydrophilicity, increased thrombin generation, platelet activation and stimulation of the intrinsic coagulation pathway. In addition, the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model. The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells. Osteogenesis was improved by both polyphosphate and blood clots. Taken together, P-CS possesses favorable hemostasis and alveolar ridge preservation capability. It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss. Statement of significance: Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction. However, its application is hampered by insufficient hemostatic and osteoinductive property. Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential.

5.
Adv Sci (Weinh) ; 9(5): e2103693, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939364

RESUMO

Although deoxyribonucleic acid (DNA) is the genetic coding for the very essence of life, these macromolecules or components thereof are not necessarily lost after a cell dies. There appears to be a link between extracellular DNA and biomineralization. Here the authors demonstrate that extracellular DNA functions as an initiator of collagen intrafibrillar mineralization. This is confirmed with in vitro and in vivo biological mineralization models. Because of their polyanionic property, extracellular DNA molecules are capable of stabilizing supersaturated calcium phosphate solution and mineralizing 2D and 3D collagen matrices completely as early as 24 h. The effectiveness of extracellular DNA in biomineralization of collagen is attributed to the relatively stable formation of amorphous liquid droplets triggered by attraction of DNA to the collagen fibrils via hydrogen bonding. These findings suggest that extracellular DNA is biomimetically significant for fabricating inorganic-organic hybrid materials for tissue engineering. DNA-induced collagen intrafibrillar mineralization provides a clue to the pathogenesis of ectopic mineralization in different body tissues. The use of DNase for targeting extracellular DNA at destined tissue sites provides a potential solution for treatment of diseases associated with ectopic mineralization.


Assuntos
Materiais Biomiméticos , Biomineralização , Colágeno , DNA , Materiais Biomiméticos/química , Colágeno/química , DNA/química , Matriz Extracelular , Engenharia Tecidual
6.
ACS Appl Mater Interfaces ; 14(12): 14103-14119, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306805

RESUMO

The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.


Assuntos
Cério , Periósteo , Animais , Biomimética , Regeneração Óssea , Casca de Ovo , Camundongos , Osteogênese , Óxidos , Periósteo/fisiologia , Engenharia Tecidual
7.
Acta Biomater ; 125: 112-125, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582360

RESUMO

Collagen membranes produced in vitro with different degrees of intrafibrillar mineralization are potentially useful for guided bone regeneration (GBR). However, highly-mineralized collagen membranes are brittle and difficult for clinical manipulation. The present study aimed at developing an intrafibrillar self-mineralization strategy for GBR membrane by covalently conjugating high-molecular weight polyacrylic acid (HPAA) on Bio-Gide® membranes (BG). The properties of the self-mineralizable membranes (HBG) and their potential to induce bone regeneration were investigated. The HBG underwent the progressive intrafibrillar mineralization as well as the increase in stiffness after immersed in supersaturated calcium phosphate solution, osteogenic medium, or after being implanted into a murine calvarial bone defect. The HBG promoted in-situ bone regeneration via stimulating osteogenic differentiation of mesenchymal stromal cells (MSCs). Hippo signaling was inhibited when MSCs were cultured on the self-mineralized HBG, and in HBG-promoted MSC osteogenesis during in-situ bone regeneration. This resulted in translocation of the transcription co-activators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) into the nucleus to induce transcription of genes promoting osteogenic differentiation of MSCs. Taken together, these findings indicated that HBG possessed the ability to self-mineralize in situ via intrafibrillar mineralization. The increase in stiffness of the extracellular matrix expedited in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade. STATEMENT OF SIGNIFICANCE: Guided bone regeneration (GBR) membranes made of naturally derived collagen have been widely used in the bone defect restoration. However, application of collagen GBR membranes run into the bottleneck with the challenges like insufficient stress strength, relatively poor dimensional stability and unsatisfactory osteoinductivity. This study develops a modified GBR membrane that can undergo progressive self-mineralization and matrix stiffening in situ. Increase in extracellular matrix stiffness provides the mechanical cues required for MSCs differentiation and expedites in-situ bone regeneration by inactivating the Hippo-YAP/TAZ signaling cascade.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Matriz Extracelular , Camundongos
8.
Biol Rev Camb Philos Soc ; 95(4): 960-985, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32207559

RESUMO

In the progression of osteoarthritis, pathological calcification in the affected joint is an important feature. The role of these crystallites in the pathogenesis and progression of osteoarthritis is controversial; it remains unclear whether they act as a disease initiator or are present as a result of joint damage. Recent studies reported that the molecular mechanisms regulating physiological calcification of skeletal tissues are similar to those regulating pathological or ectopic calcification of soft tissues. Pathological calcification takes place when the equilibrium is disrupted. Calcium phosphate crystallites are identified in most affected joints and the presence of these crystallites is closely correlated with the extent of joint destruction. These observations suggest that pathological calcification is most likely to be a disease initiator instead of an outcome of osteoarthritis progression. Inhibiting pathological crystallite deposition within joint tissues therefore represents a potential therapeutic target in the management of osteoarthritis.


Assuntos
Calcinose/patologia , Osteoartrite/patologia , Apoptose , Bolsa Sinovial/patologia , Calcinose/classificação , Calcinose/complicações , Calcinose/etiologia , Cálcio/metabolismo , Cartilagem/patologia , Condrócitos/patologia , Colágeno/fisiologia , Difosfatos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/patologia , Vesículas Extracelulares/metabolismo , Humanos , Menisco/patologia , Mitocôndrias/fisiologia , Osteoartrite/complicações , Osteoartrite/etiologia , Fosfatos/metabolismo , Proteoglicanas/fisiologia , Pirofosfatases/fisiologia , Índice de Gravidade de Doença
9.
ACS Omega ; 5(18): 10228-10239, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32426579

RESUMO

Shale gas exploration in the Upper Yangtze Basin has been conducted for over ten years. The successful drillings in the region suggest that well-planned geological survey and reservoir evaluation are indispensable for the success of these drillings. In this study, the shale gas potential of Late Ordovician to Early Silurian mudstones/shales of the Wufeng-Longmaxi formations in the Upper Yangtze Basin was evaluated. First, all of the available geochemical and petrological data from Late Ordovician to Early Silurian mudstones/shales in the region were compiled. Distributional patterns of total organic carbon (TOC) values, thickness, thermal maturity, and burial depth of organic-rich mudstones/shales from the targeted formations were then analyzed. Our results show that TOC values range from 1.20 to 5.12%; R o values range from 1.92 to 2.86%; porosity varies from 0.77 to 9.2%; permeability varies from 0.015 to 1.99 md; the composition of quartz group of mineral component ranges from 18 to 85%, 59% in average; and clay mineral component ranges from 7 to 56%, 31% in average. Finally, based on these comprehensive analysis, three areas with great potential, that is, Luzhou-Xishui, western Chongqing, and Wulong-Shizhu, were selected as targets for further shale gas exploration and exploitation.

10.
Bone ; 133: 115229, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926929

RESUMO

ß2-adrenergic signal transduction in mesenchymal stem cells (MSCs) induces subchondral bone loss in osteoarthritis (OA) of temporomandibular joints (TMJs). However, whether conditional deletion of ß2-adrenergic receptor (Adrb2) in nestin+ MSCs can alleviate TMJ-OA development remains unknown. In this study, nestin-Cre mice were crossed with Adrb2 flox mice to generate mice lacking Adrb2 expression specifically in the nestin+ MSCs (Adrb2-/-), and TMJ-OA development in such mice was investigated. Adrb2 flox mice (Adrb2+/+) and Adrb2-/- mice were subjected to unilateral anterior crossbite (UAC), while mice in the control group were subjected to sham operation. Adrb2+/+ and Adrb2-/- mice in the control group showed no distinguishable phenotypic changes in body weight and length, mandibular condylar size, and other histomorphological parameters of the condylar subchondral bone. A significant increase in subchondral bone loss and cartilage degradation was observed in Adrb2+/+ UAC mice; the former was characterized by decreased bone mineral density, bone volume fraction, and trabecular plate thickness, and increased trabecular separation, osteoclast number and osteoclast surface, and pro-osteoclastic factor expression; the latter was characterized by decreased cartilage thickness, chondrocyte density, proteoglycan area, and collagen II and aggrecan expression, but increased matrix metalloproteinase and alkaline phosphatase expression and percentage area of calcified cartilage. Adrb2 deletion in nestin+ MSCs largely attenuated UAC-induced increase in condylar subchondral bone loss, cartilage degradation, and aberrant calcification at the osteochondral interface. Thus, Adrb2-expressing MSCs in the condylar subchondral bone play an important role in TMJ-OA progression and may serve as novel therapeutic targets for TMJ-OA.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Animais , Modelos Animais de Doenças , Côndilo Mandibular , Camundongos , Osteoartrite/genética , Articulação Temporomandibular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA