Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115814, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100851

RESUMO

Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Células Hep G2 , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Apoptose
2.
Ecotoxicol Environ Saf ; 249: 114375, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508836

RESUMO

Microplastics (MPs) are widespread in the environment and can be ingested through food, water, and air, posing a threat to human health. In addition, MPs can have a potential combined effect with other toxic compounds. Polystyrene (PS) has been shown to enhance the cytotoxicity of okadaic acid (OA). However, it remains unclear whether this enhancement effect is related to the size of PS particles. In this study, we investigated the mechanism of the combined effect of PS microplastics (PS-MPs) or PS nanoplastics (PS-NPs) and OA on Caco-2 cells. The results indicated that PS-NPs enhanced the cytotoxicity of OA and induced endoplasmic reticulum (ER) stress-mediated apoptosis in Caco-2 cells, compared to PS-MPs. Specifically, PS-NPs and OA cause more severe oxidative stress, lactate dehydrogenase (LDH) release, and mitochondrial membrane depolarization. Furthermore, it induced intracellular calcium overload through store-operated channels (SOCs) and activated the PERK/ATF-4/CHOP pathway to cause ER stress. ER stress promoted mitochondrial damage and finally activated the caspase family to induce apoptosis. This study provided an indirect basis for the assessment of the combined toxicity of MPs or NPs with OA.


Assuntos
Apoptose , Microplásticos , Ácido Okadáico , Poliestirenos , Poluentes Químicos da Água , Humanos , Apoptose/efeitos dos fármacos , Células CACO-2 , Microplásticos/toxicidade , Ácido Okadáico/toxicidade , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Biochem Biophys Res Commun ; 634: 10-19, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36228540

RESUMO

Extracellular vesicles (EVs) and their exosome subsets are vesicle-like nanoparticles (EVs) that are secreted by cells and contain various factors that treat various diseases. However, studies on extracting EVs from marine shellfish are still relatively lacking. In this study, EVs were isolated from Pinctada martensii mucus and the efficacy of EVs in modulating the inflammatory environment was demonstrated. A human skin inflammatory cell model was established to investigate the effect of Pinctada martensii mucus-derived EVs on inflammation. The results showed that EVs could restore the viability of inflammatory HaCaT cells and decrease the level of reactive oxygen species (ROS), as well as the mRNA expression of IL-6, IL-8 and TNF-α. The inflammation of HaCaT cells was treated by inhibiting the activation of the MAPK, NF-κB and NLRP3 inflammasome signaling pathways, which prevented the phosphorylation of related inflammatory proteins and the entry of P65 protein into the nucleus. This study provides novel EVs from marine shellfish-derived bioactive materials.


Assuntos
Dermatite , Vesículas Extracelulares , Pinctada , Animais , Humanos , Vesículas Extracelulares/metabolismo , Inflamassomos/metabolismo , Inflamação , Muco/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pinctada/metabolismo , Proteínas Quinases Ativadas por Mitógeno
4.
Sci Total Environ ; 918: 170664, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38311080

RESUMO

The problem of microplastics (MPs) contamination in food has gradually come to the fore. MPs can be transmitted through the food chain and accumulate within various organisms, ultimately posing a threat to human health. The concentration of nanoplastics (NPs) exposed to humans may be higher than that of MPs. For the first time, we studied the differences in toxicity, and potential toxic effects of different polymer types of NPs, namely, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS) on HepG2 cells. In this study, PET-NPs, PVC-NPs, and PS-NPs, which had similar particle size, surface charge, and shape, were prepared using nanoprecipitation and emulsion polymerization. The results of the CCK-8 assay showed that the PET-NPs and PVC-NPs induced a decrease in cell viability in a concentration-dependent manner, and their lowest concentrations causing significant cytotoxicity were 100 and 150 µg/mL, respectively. Moreover, the major cytotoxic effects of PET-NPs and PVC-NPs at high concentrations may be to induce an increase in intracellular ROS, which in turn induces cellular damage and other toxic effects. Notably, our study suggested that PET-NPs and PVC-NPs may induce apoptosis in HepG2 cells through the mitochondrial apoptotic pathway. However, no relevant cytotoxicity, oxidative damage, and apoptotic toxic effects were detected in HepG2 cells with exposure to PS-NPs. Furthermore, the analysis of transcriptomics data suggested that PET-NPs and PVC-NPs could significantly inhibit the expression of DNA repair-related genes in the p53 signaling pathway. Compared to PS-NPs, the expression levels of lipid metabolism-related genes were down-regulated to a greater extent by PET-NPs and PVC-NPs. In conclusion, PET-NPs and PVC-NPs were able to induce higher cytotoxic effects than PS-NPs, in which the density and chemical structure of NPs of different polymer types may be the key factors causing the differences in toxicity.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Células Hep G2 , Microplásticos/toxicidade , Plásticos/toxicidade , Apoptose , Polietilenotereftalatos , Polímeros/toxicidade , Poliestirenos/toxicidade
5.
ACS Appl Mater Interfaces ; 15(22): 26227-26240, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226779

RESUMO

Osteosarcoma is prone to metastasis and has a low long-term survival rate. The drug treatment of osteosarcoma, side effects of treatment drugs, and prognosis of patients with lung metastasis continue to present significant challenges, and the efficacy of drugs used in the treatment of osteosarcoma remains low. The development of new therapeutic drugs is urgently needed. In this study, we successfully isolated Pinctada martensii mucilage exosome-like nanovesicles (PMMENs). Our findings demonstrated that PMMENs inhibited the viability and proliferation of 143B cells, induced apoptosis, and inhibited cell proliferation by suppressing the activation of the ERK1/2 and Wnt signaling pathways. Furthermore, PMMENs inhibited cell migration and invasion by downregulating N-cadherin, vimentin, and matrix metalloprotease-2 protein expression levels. Transcriptomic and metabolomic analyses revealed that differential genes were co-enriched with differential metabolites in cancer signaling pathways. These results suggest that PMMENs may exert anti-tumor activity by targeting the ERK1/2 and Wnt signaling pathways. Moreover, tumor xenograft model experiments showed that PMMENs can inhibit the growth of osteosarcoma in mice. Thus, PMMENs may be a potential anti-osteosarcoma drug.


Assuntos
Neoplasias Ósseas , Exossomos , Osteossarcoma , Pinctada , Humanos , Animais , Camundongos , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Apoptose , Proliferação de Células , Via de Sinalização Wnt , Osteossarcoma/metabolismo , Movimento Celular
6.
Sci Total Environ ; 905: 167010, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722421

RESUMO

As an emerging environmental pollutant, nanoplastics (NPs) have attracted wide attention in terms of their impact on the ecological environment and human health. Currently, researches on the cytotoxicity of NPs mainly focus on oxidative stress, damage to the cell membrane and organelles, induction of immune response and genotoxicity. Okadaic acid (OA) is the main component of diarrheal shellfish toxin. Based on the previous combined toxicity exploration of polystyrene (PS) NPs and (OA) to human gastric adenocarcinoma (AGS) cells, cell-derived exosomes were extracted and exosomal miRNA profiles were analyzed for the first time in this study. The results showed that the composition of miRNAs varied after the exposure of NPs and OA. Specifically, the expression of miR-1-3p in both PS-Exo and PS-OA-Exo was significantly reduced. And the expression of miR-1248 was upregulated most significantly by comparing the DE miRNAs between PS-Exo and PS-OA-Exo. MiR-1-3p and miR-1248 may be the key genes for the combined toxicity of NPs and OA. After analysis, we found that both the decreased expression of miR-1-3p and the increased expression of miR-1248 can increase the expression of FN1 and affect DNA replication, which was surprisingly consistent with the results of our previous cytotoxicity studies. Since exosomal miRNAs are selectively encapsulated by donor cell, we speculate that the changes of exosomal miRNAs may due to the synchronous changes of intracellular environment and the downregulation of intracellular FN1 may be attributed to decreased expression of miR-1-3p and increased expression of miR-1248 in donor cells. Accordingly, we come to the conclusion that the changes of miRNAs in the exosomes derived from AGS cells after environmental stimulation could reflect the biological effects of donor cells.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Ácido Okadáico/toxicidade , Regulação para Baixo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA