RESUMO
This study assessed the influence of the additions of lignocellulose-degrading microbial agents and biochar on nitrogen (N) metabolism and microbial community succession during pig manure composting. Four treatments were established: CK (without additives), M (lignocellulose-degrading microbial agents), BC (biochar), and MBC (lignocellulose-degrading microbial agents and biochar). The results revealed that all treatments with additives decreased N loss compared with CK. In particular, the concentrations of total N and NO3--N were the highest in M, which were 21.87% and 188.67% higher than CK, respectively. Meanwhile, the abundance of denitrifying bacteria Flavobacterium, Enterobacter, and Devosia reduced with additives. The roles of Anseongella (nitrifying bacterium) and Nitrosomonas (ammonia-oxidizing bacterium) in NO3--N transformation were enhanced in M and BC, respectively. N metabolism pathway prediction indicated that lignocellulose-degrading microbial agents addition could enhance N retention effectively mainly by inhibiting denitrification. The addition of biochar enhanced oxidation of NH4+-N to NO2--N and N fixation, as well as inhibited denitrification. These results revealed that the addition of lignocellulose-degrading microbial agents individually was more conducive to improve N retention in pig manure compost.
Assuntos
Compostagem , Microbiota , Suínos , Animais , Esterco , NitrogênioRESUMO
No-tillage and subsoiling can improve soil aggregate structure and realize a synergistic effect of soil carbon and nitrogen retention compared with deep tillage. This study aimed to investigate the effects of different tillage methods on the microbiome and metabolites in wheat rhizosphere. Results indicated that no significant differences in the diversity of soil bacterial and fungal communities were observed among the tillage methods. Analysis revealed that no-tillage enriched specific genera such as Cryptosporangium, Crossiella, Rhodothermaceae, Leptothrix, Stilbella, Diutina, and Pyrenochaetopsis, while subsoiling was associated with Rubrobacter, Latescibacteraceae, Nitrospira, Rokubacteriales, and Ctenomyces. Deep tillage, on the other hand, showed significant associations with Nocardia, Aeromicrobium, Sphingopyxis, Cordyceps, and Subulicystidium. Metabolomic analysis identified differential metabolites involved in various pathways, including the biosynthesis of plant secondary metabolites, ABC transporters, and starch and sucrose metabolism. Correlation analysis revealed a significant interaction between microorganisms and metabolites in wheat rhizosphere. Bacteria at the genus level exhibited greater associations with differential metabolites. In conclusion, different tillage practices can alter the composition of microbial communities and metabolites in wheat rhizosphere, and their interactions may affect soil fertility and wheat growth.
Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Solo/química , Fungos/metabolismo , Fungos/genética , Agricultura/métodos , Metabolômica/métodos , Metaboloma , MultiômicaRESUMO
In order to investigate the effects of ammonium sulfate, an industrial by-product, on soil nutrients and microbial community when applied in different proportions instead of using urea as nitrogen fertilizer, a pot corn experiment was conducted. A completely randomized block experimental design was used, with a total of five treatments:CK (no fertilization), U10S0 (100 % urea), U8S2 (80 % urea + 20 % ammonium sulfate), U6S4(60 % urea + 40 % ammonium sulfate), and U0S10 (100 % ammonium sulfate). The basic physical and chemical properties of soil and the dry weight of maize plants were determined by conventional methods, and microbial sequencing was performed using the Illumina NovaSeq platform. The experiment results showed that:â In each growth stage of maize, the pH of soil treated with fertilization (7.85-8.15) was decreased compared with that of CK (8.1-8.21), and the pH showed a decreasing trend with the increase in ammonium sulfate content. â¡ The soil available nitrogen content increased gradually with the increase in the ammonium sulfate ratio at each growth stage of maize. Compared with that in the CK and U10S0 treatments, the ratio in the U0S10 treatment increased 30.56 % to 63.68 % and 13.22 % to 38.43 %, respectively. The variation trend of organic carbon content was opposite to that of available nitrogen (U8S2 > U6S4 > U0S10), and the addition of ammonium sulfate was still higher than that of U10S0 at other growth stages except for the seedling stage. ⢠The protease activity of all fertilization treatments was higher than that of the control, and the protease activity was gradually enhanced with the continuous growth of corn and the increase in the ammonium sulfate ratio. The protease activity of the U0S10 treatment was higher than that of the U10S0 treatment at each growth stage of corn, which increased by 10.54 %-100 %. Soil sucrase activity ranged from 0.04 to 0.24 mg·(g·24 h)-1, and those in the U0S10 treatments were significantly higher than those in the U10S0 and CK treatments at all growth stages, increasing by 20.32 % to 99.16 % and 24.31 % to 79.33 %, respectively. ⣠The species abundance of bacteria and fungi in maize rhizosphere under all fertilization treatments were lower than those under the CK treatment, followed by those under the U10S0 treatment. The species diversity trend of the bacterial community in the three treatments with ammonium sulfate replacing urea were U8S2 > U0S10 > U6S4, and that of fungi were U6S4 > U8S2 > U0S10. ⤠The maize dry weight of the U10S0 treatment and U0S10 treatment was the highest, which was 39.47 % and 36.16 % higher than that of the CK treatment, respectively, but the difference was not significant. The Pearson model showed that the species abundance and diversity of soil rhizosphere fungi and bacteria were affected by relevant environmental variables, among which pH value and soil available nitrogen content were the most important factors affecting microbial diversity. In conclusion, when corn planting in calcareous brown soil, replacing urea with a certain proportion of ammonium sulfate can improve soil nutrients more than urea alone, which affects the growth and rhizosphere microbial community of corn to a certain extent and has a greater yield.
Assuntos
Sulfato de Amônio , Fertilizantes , Nitrogênio , Rizosfera , Microbiologia do Solo , Solo , Ureia , Zea mays , Zea mays/crescimento & desenvolvimento , Solo/química , Ureia/metabolismo , Microbiota/efeitos dos fármacosRESUMO
Five coal samples obtained from Chinese coal-producing areas were oxidized by hydrogen peroxide (H2O2), and humic acids (HAs) were derived from original coal and its oxidizition samples. HAs were characterized by physical and chemical methods, between which was also comparison. Yield, ash, aromaticity, molecular weight and functional group of HAs showed variance between original coals. While, yield, molecular weight, and the quantity of oxygen-containing groups of HAs increased more from coals oxidized with H2O2. However, the increase of oxygen-containing functional groups depended on original coals. For Yimin lignite, the oxidation of H2O2 could obviously improve the carboxyl group content of HAs, thus promoting the adsorption of nitrogen. This study demonstrated that oxidation of coal by using H2O2 was one pretreatment way to obtain and modify HAs which could be used as prerequisite and functional material in agricultural field.
RESUMO
Isolating dominant strains for the degradation of polycyclic aromatic hydrocarbons (PAHs) is of great practical significance for the restoration of ecosystem polluted by PAHs. A total of 11 strains with capacity of degrading PAHs were obtained from soil polluted by PAHs around a coking plant, by enrichment culture, acclimation, and plate isolation. Three of them with effective PAH-degrading capability were identified and screened out by morphological observation, physiobiochemical characterization, and 16S rRNA gene sequencing, and respectively, named as DJ-3, DJ-8 and DJ-10. Based on the results of 16S rRNA gene sequencing, DJ-3, DJ-8, and DJ-10 were identified as Pseudomonas sp. Klebsiella sp., and Bacillus sp. The degradation rate of phenanthrene (200 mg·L-1), pyrene (200 mg·L-1), and naphthol (160 mg·L-1) by three strains (DJ-3, DJ-8 and DJ-10) after seven-day incubation were 48.9%-65.9%, 38.9%-43.1%, and 57.6%-64.9%, respectively. The degradation rates of mixed PAHs sample (1200 mg·L-1) by three strains were 49.1%, 44.5%, and 53.9%, which were significantly higher than other eight strains, indicating that they were highly effective in PAHs degradation. There was no antagonistic relationship among the three strains. This study would lay a foundation for building efficient PAHs degrading strains and improve the in situ bioremediation of PAHs contaminated soil.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , RNA Ribossômico 16S/genética , Microbiologia do SoloRESUMO
Synthetic fungicides are eco-unfriendly to agriculture and the environment. Agricultural Jiaosu (AJ), which originates from organic wastes, has the potential to be a substitute for synthetic fungicides. In this study, the characteristics of AJ and its antifungal activity against Botrytis cinerea were investigated for the first time. AJ was rich in lactic acid (4.46 g/L), acetic acid (1.52 g/L), Lactobacillus (72.45%) and Acetobacter (15.23%), which was a microbial ecosystem consisting of acid-based substances (AS) and beneficial microorganisms (BM). The results of the antifungal assays suggested that B. cinerea was effectively inhibited by AJ, with the half-maximal inhibitory concentration (IC50) of 9.24%. AJ showed the strongest and most-lasting inhibitory effect compared to cell-free supernatant and microbial solution of AJ, indicating that AS and BM and their synergistic effect contributed to the antifungal activity of AJ. Two-step inhibition' is an antifungal mode of AJ. Firstly, AS not only inhibited the pathogen directly but also provided a dominant niche for BM of AJ. Then, BM in AJ, especially Acetobacter, proliferated and metabolized acetic acid continuously. Thus, AJ achieved high-efficiency and long-acting inhibition. AJ is a promising biological agent considering its features of an eco-friendly, low-cost and easy-to-operate biological agent in rural areas.