Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170908

RESUMO

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

2.
J Am Chem Soc ; 144(26): 11840-11850, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732040

RESUMO

The high porosity and tunability of metal-organic frameworks (MOFs) have made them an appealing group of materials for environmental applications. However, their potential in the photocatalytic degradation of per- and polyfluoroalkyl substances (PFAS) has been rarely investigated. Hereby, we demonstrate that over 98.9% of perfluorooctanoic acid (PFOA) was degraded by MIL-125-NH2, a titanium-based MOF, in 24 h under Hg-lamp irradiation. The MOF maintained its structural integrity and porosity after three cycles, as indicated by its crystal structure, surface area, and pore size distribution. Based on the experimental results and density functional theory (DFT) calculations, a detailed reaction mechanism of the chain-shortening and H/F exchange pathways in hydrated electron (eaq-)-induced PFOA degradation were revealed. Significantly, we proposed that the coordinated contribution of eaq- and hydroxyl radical (•OH) is vital for chain-shortening, highlighting the importance of an integrated system capable of both reduction and oxidation for efficient PFAS degradation in water. Our results shed light on the development of effective and sustainable technologies for PFAS breakdown in the environment.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Purificação da Água , Caprilatos/química , Fluorocarbonos/química , Estruturas Metalorgânicas/química , Purificação da Água/métodos
3.
Angew Chem Int Ed Engl ; 61(49): e202214055, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36224094

RESUMO

Photo-catalysis by small-molecules is often limited by catalyst degradation and low electron-transfer efficiency. Herein we report a stable N-phenyl-phenothiazine (PTH)-derived porous coordination cage (PCC) as a highly efficient photocatalyst. By the incorporation of the photocatalytic PTH moiety into a PCC, aggregation-induced quenching (AIQ) was shown to be reduced. An improvement in catalyst stability was discovered, ascribed to the synergistic effects of the PTH moieties. The catalyst, operating through a photolytic single-electron transfer, was utilized for photo-catalyzed dehalogenation and borylation. Evaluation of the catalytic mechanism in the borylation reaction showed that the improved performance results from the more efficient formation of the electron donor-acceptor (EDA) complex with the cage. This discovery provides a potential strategy to improve the photophysical properties and stabilities of small-molecule organic photocatalysts via supramolecular chemistry.

4.
Nanomedicine ; 35: 102392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872772

RESUMO

This paper reports a smart intracellular nanocarrier for sustainable and controlled drug release in non-invasive neuroregeneration. The nanocarrier is composed by superparamagnetic iron oxide-gold (SPIO-Au) core-shell nanoparticles (NPs) conjugated with porous coordination cages (PCCs) through the thiol-containing molecules as bridges. The negatively charged PCC-2 and positively charged PCC-3 are compared for intracellular targeting. Both types result in intracellular targeting via direct penetration across cellular membranes. However, the pyrene (Py)-PEG-SH bridge enabled functionalization of SPIO-Au NPs with PCC-3 exhibits higher interaction with PC-12 neuron-like cells, compared with the rhodamine B (RhB)-PEG-SH bridge enabled case and the stand-alone SPIO-Au NPs. With neglectable toxicities to PC-12 cells, the proposed SPIO-Au-RhB(Py)-PCC-2(3) nanocarriers exhibit effective drug loading capacity of retinoic acid (RA) at 13.505 µg/mg of RA/NPs within 24 h. A controlled release of RA is achieved by using a low-intensity 525 nm LED light (100% compared to 40% for control group within 96 h).


Assuntos
Portadores de Fármacos , Compostos Férricos , Ouro , Nanopartículas , Regeneração Nervosa/efeitos dos fármacos , Tretinoína , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacocinética , Compostos Férricos/farmacologia , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Células PC12 , Porosidade , Ratos , Tretinoína/química , Tretinoína/farmacocinética , Tretinoína/farmacologia
5.
J Am Chem Soc ; 142(6): 3069-3076, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31971790

RESUMO

The idea of modularity in organic total synthesis has promoted the construction of diverse targeted natural products by varying the building blocks and assembly sequences. Yet its utilization has been mainly limited to the synthesis of molecular compounds based on covalent bonds. In this work, we expand the conceptual scope of modular synthesis into framework materials, which bridges metal- and covalent organic frameworks (MOFs and COFs) hierarchically in reticular chemistry. While the assembly sequences are determined by the coordination or the covalent bond strengths, a modular synthesis strategy which progressively links simple building blocks into increasingly sophisticated superstructures was reported. As a result, a series of hierarchical COF-on-MOF structures with architectural intricacy were obtained through sequence-defined reactions of diverse building blocks. The tunability of spatial apportionment, compositions, and functionality was successfully managed in these framework materials. To the best of our knowledge, this is the first report on the synthesis of COF@MOF composites and also the first discovery of controlled COF alignment. This generalizable modularity strategy will not only accelerate the discovery of multicomponent framework materials by the hierarchical assembly of MOFs and COFs but also offer a predictable retrosynthetic route to smart materials with unusual tunability owing to the diverse inorganic or organic building units.

6.
Angew Chem Int Ed Engl ; 59(28): 11349-11354, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32243687

RESUMO

Hierarchically porous metal-organic frameworks (HP-MOFs) facilitate mass transfer due to mesoporosity while preserving the advantage of microporosity. This unique feature endows HP-MOFs with remarkable application potential in multiple fields. Recently, new methods such as linker labilization for the construction of HP-MOFs have emerged. To further enrich the synthetic toolkit of MOFs, we report a controlled photolytic removal of linkers to create mesopores within microporous MOFs at tens of milliseconds. Ultraviolet (UV) laser has been applied to eliminate "photolabile" linkers without affecting the overall crystallinity and integrity of the original framework. Presumably, the creation of mesopores can be attributed to the missing-cluster defects, which can be tuned through varying the time of laser exposure and ratio of photolabile/robust linkers. Upon laser exposure, MOF crystals shrank while metal oxide nanoparticles formed giving rise to the HP-MOFs. In addition, photolysis can also be utilized for the fabrication of complicated patterns with high precision, paving the way towards MOF lithography, which has enormous potential in sensing and catalysis.

7.
J Am Chem Soc ; 141(26): 10342-10349, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31194537

RESUMO

The idea that complex systems have a hierarchical arrangement has been widely observed on various scales. In this work, we introduce the concept of modular programming, which emphasizes isolating the functionality of a system into independent, interchangeable modules, to tailor the hierarchy and diversity in these complex systems. Guided by modular programming, a system with multiple compatible components, including modules A, B, C, and so forth, can be constructed and subsequently modified into modules A', B', C', and so forth independently. As a proof of concept, a series of multivariate hierarchical metal-organic frameworks (MOFs) with various compositions, ratios, and distributions were prepared as a compatible system. Sequential click reactions and acid treatments can be utilized to selectively modify a certain modular MOF into a polymer, while other modular MOFs either remain in their original state or dissolve upon treatment. As a result, a series of polymer/MOF composites that traditionally have been viewed as incompatible can be prepared with tailored properties and behaviors. The resulting polymer/MOF hierarchical composites represent a unique porous composite material which contains functional groups and metal clusters with controllable compositions and distribution, tunable hierarchically porous structures, and tailored diversity within one framework. This general synthesis approach guided by modular programming not only provides a facile method to tailor hierarchy and diversity in multivariate systems but also enables the investigation into hierarchy and its structured control flow, which is a critical design feature of future materials for their fast adaptivity and responses to variable environmental conditions.

8.
J Am Chem Soc ; 141(37): 14524-14529, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31484478

RESUMO

Sophisticated chemical processes widely observed in biological cells require precise apportionment regulation of building units, which inspires researchers to develop tailorable architectures with controllable heterogeneity for replication, recognition and information storage. However, it remains a substantial challenge to endow multivariate materials with internal sequences and controllable apportionments. Herein, we introduce a novel strategy to manipulate the apportionment of functional groups in multivariate metal-organic frameworks (MTV-MOFs) by preincorporating interlocked linkers into framework materials. As a proof of concept, the imprinted apportionment of functional groups within ZIF-8 was achieved by exchanging imine-based linker templates with original linkers initially. The removal of linker fragments by hydrolysis can be achieved via postsynthetic labilization, leading to the formation of architectures with controlled heterogeneity. The distributions of functional groups in the resulting imprinted MOFs can be tuned by judicious control of the interlocked chain length, which was further analyzed by computational methods. This work provides synthetic tools for precise control of pore environment and functionality sequences inside multicomponent materials.

9.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808077

RESUMO

Finding curable therapies for neurodegenerative disease (ND) is still a worldwide medical and clinical challenge. Recently, investigations have been made into the development of novel therapeutic techniques, and examples include the remote stimulation of nanocarriers to deliver neuroprotective drugs, genes, growth factors, and antibodies using a magnetic field and/or low-power lights. Among these potential nanocarriers, magneto-plasmonic nanoparticles possess obvious advantages, such as the functional restoration of ND models, due to their unique nanostructure and physiochemical properties. In this review, we provide an overview of the latest advances in magneto-plasmonic nanoparticles, and the associated therapeutic approaches to repair and restore brain tissues. We have reviewed their potential as smart nanocarriers, including their unique responsivity under remote magnetic and light stimulation for the controlled and sustained drug delivery for reversing neurodegenerations, as well as the utilization of brain organoids in studying the interaction between NPs and neuronal tissue. This review aims to provide a comprehensive summary of the current progress, opportunities, and challenges of using these smart nanocarriers for programmable therapeutics to treat ND, and predict the mechanism and future directions.

10.
Adv Healthc Mater ; 11(13): e2200004, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35306753

RESUMO

Nanomedicine with stable light-heat conversion and spatiotemporally controllable drug activation is crucial for the success of photothermal therapy (PTT). Herein, a metal-organic framework (MOF)-based nanoheater with light-triggered multi-responsiveness is engineered to in-situ and on-demand sensitize cancer cells to local hyperthermia. Well-dispersed platinum nanoparticles synthesized inside nanospaces of the MOF are employed as the near-infrared (NIR)-harvesting unit with stable and high light-heat conversion performance. A conformation switchable polymer shell is constructed as a secondary light-responding unit to gate the targeted activation of a molecular inhibitor against thermoresistance. By cascade transformation of light stimuli to downstream signals, the nanoheater enables inhibitor release to go with local heating at the same time restricted in lesion sites to maximize efficacy and minimize systemic toxicity. The efficient photothermal conversion and the blockage of cellular heat-protective pathways provide a dual-mode of action which selectively sensitizes cancer cells to hyperthermia in a spatiotemporally controlled manner. With NIR as the remote switch, the MOF-based nanosystem demonstrates localized and boosted PTT efficacy against cancer both in vitro and in vivo. These results present nanosized MOFs as tailorable and versatile platforms for synergistic and precise cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Nanopartículas Metálicas/uso terapêutico , Estruturas Metalorgânicas/farmacologia , Neoplasias/terapia , Fototerapia , Platina , Nanomedicina Teranóstica/métodos
11.
ACS Cent Sci ; 8(2): 184-191, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233451

RESUMO

Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.

12.
Polymers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883616

RESUMO

Metal-organic frameworks (MOFs) are emerging as novel flame retardants for polymers, which, typically, can improve their thermal stability and flame retardancy. However, there is a lack of specific studies on the thermal decomposition kinetics of MOF-based polymer composites, although it is known that they are important for the modeling of flaming ignition, burning, and flame spread over them. The thermal decomposition mechanisms of poly (methyl methacrylate) (PMMA) have been well investigated, which makes PMMA an ideal polymer to evaluate how fillers affect its decomposition process and kinetics. Thus, in this study, UiO-66, a common type of MOF, was embedded into PMMA to form a composite. Based on the results from the microscale combustion calorimeter, the values of the apparent activation energy of PMMA/UiO-66 composites were calculated and compared against those of neat PMMA. Furthermore, under cone calorimeter tests, UiO-66, at only 1.5 wt%, can reduce the maximum burning intensity and average mass loss rate of PMMA by 14.3% and 12.4%, respectively. By combining UiO-66 and SiO2 to form a composite, it can contribute to forming a more compact protective layer, which shows a synergistic effect on reducing the maximum burning intensity and average mass loss rate of PMMA by 22.0% and 14.7%, respectively.

13.
Mater Adv ; 2(16): 5487-5493, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34458847

RESUMO

The effect of metal-cluster redox identity on the thermal decarboxylation of a series of isostructural metal-organic frameworks (MOFs) with tetracarboxylate-based ligands and trinuclear µ3-oxo clusters was investigated. The PCN-250 series of MOFs can consist of various metal combinations (Fe3, Fe/Ni, Fe/Mn, Fe/Co, Fe/Zn, Al3, In3, and Sc3). The Fe-based system can undergo a thermally induced reductive decarboxylation, producing a mixed valence cluster with decarboxylated ligand fragments subsequently eliminated to form uniform mesopores. We have extended the analysis to alternative monometallic and bimetallic PCN-250 systems to observe the cluster's effect on the decarboxylation process. Our results suggest that the propensity to undergo decarboxylation is directly related to the cluster redox accessibility, with poorly reducible metals, such as Al, In, and Sc, unable to thermally reduce at the readily accessible temperatures of the Fe-containing system. In contrast, the mixed-metal variants are all reducible. We report improvements in gas adsorption behavior, significantly the uniform increase in the heat of adsorption going from the microporous to hierarchically induced decarboxylated samples. This, along with Fe oxidation state changes from 57Fe Mössbauer spectroscopy, suggests that reduction occurs at the clusters and is essential for mesopore formation. These results provide insight into the thermal behavior of redox-active MOFs and suggest a potential future avenue for generating mesoporosity using controlled cluster redox chemistry.

14.
Natl Sci Rev ; 7(11): 1743-1758, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34691505

RESUMO

Despite numerous advantages, applications of conventional microporous metal-organic frameworks (MOFs) are hampered by their limited pore sizes, such as in heterogeneous catalysis and guest delivery, which usually involve large molecules. Construction of hierarchically porous MOFs (HP-MOFs) is vital to achieve the controllable augmentation of MOF pore size to mesopores or even macropores, which can enhance the diffusion kinetics of guests and improve the storage capacity. This review article focuses on recent advances in the methodology of HP-MOF synthesis, covering preparation of HP-MOFs with intrinsic hierarchical pores, and modulated, templated and template-free synthetic strategies for HP-MOFs. The key factors which affect the formation of HP-MOF architectures are summarized and discussed, followed by a brief review of their applications in heterogeneous catalysis and guest encapsulation. Overall, this review presents a roadmap that will guide the future design and development of HP-MOF materials with molecular precision and mesoscopic complexity.

15.
Chem Sci ; 11(6): 1643-1648, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32206283

RESUMO

The idea of hierarchy, widely observed in natural and artificial worlds, has been extensively explored in chemistry and materials science. Similar to proteins which contain primary, secondary, tertiary and quaternary structures, varying levels of hierarchy in metal-organic framework (MOF) superstructures can also be achieved. In this work, we initiate a systematic study on the morphological evolution of hierarchical superstructures with the assistance of seeded growth and explore the assembly of multiple modular MOFs into superstructures with enhanced hierarchy and diversity. By utilizing MOF-74-III spherulite superstructures as seeds, multiple quaternary architectures were obtained depending on the lengths of organic linker precursors. The resulting superstructures with superior hierarchy represent a unique porous material which contains multiple modules with diverse morphologies. To the best of our knowledge, this is the first report that utilizes tertiary superstructures as seeds in MOF synthesis, which leads to unusual and diverse behaviors during secondary growth. This synthetic approach not only provides a facile method to establish hierarchy in porous materials, but also enables the fabrication of multiscale heterostructures through secondary growth on MOF seeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA