Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nature ; 614(7948): 456-462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792740

RESUMO

Stretchable hybrid devices have enabled high-fidelity implantable1-3 and on-skin4-6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15-17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft-soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm-1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.


Assuntos
Eletromiografia , Eletrônica Médica , Nanoestruturas , Maleabilidade , Polímeros , Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Humanos , Nanoestruturas/química , Polímeros/química , Pele , Monitorização Fisiológica , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Eletromiografia/instrumentação
2.
Proc Natl Acad Sci U S A ; 120(51): e2314264120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100418

RESUMO

The separator with high Young's modulus can avoid the danger of large-sized dendrites, but regulating the chemical behavior of lithium (Li) at the separator/anode interface can effectively eliminate the dendrite issue. Herein, a polyimine aerogel (PIA) with accurate nitrogen (N) functional design is used as the functional separator in Li metal batteries to promote uniform Li nucleation and suppress the dendrite growth. Specifically, the imine (N1) and protonated tertiary amine (N2) sites in the molecular structure of the PIA are significantly different in electron cloud density (ECD) distribution. The N1 site with higher ECD and the N2 site with lower ECD tend to attract and repulse Li+ through electrostatic interactions, respectively. This synergy effect of the PIA separator accelerates the interfacial Li+ diffusion on the Li anode to sustain a uniform two-dimensional Li nucleation behavior. Meanwhile, the well-defined nanochannels of the PIA separator show high affinity to electrolyte and bring uniform Li+ flux for Li plating/stripping. Consequently, the dendrites are effectively suppressed by the PIA separator in routine carbonate electrolyte, and the Li metal batteries with the PIA separator exhibit high Coulombic efficiency and stable high-rate cycling. These findings demonstrate that the ingenious marriage of special chemical structure designs and hierarchical pores can enable the separator to affect the interfacial Li nucleation behavior.

3.
Proc Natl Acad Sci U S A ; 120(29): e2218973120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428928

RESUMO

Antibiotics are among the most used weapons in fighting microbial infections and have greatly improved the quality of human life. However, bacteria can eventually evolve to exhibit antibiotic resistance to almost all prescribed antibiotic drugs. Photodynamic therapy (PDT) develops little antibiotic resistance and has become a promising strategy in fighting bacterial infection. To augment the killing effect of PDT, the conventional strategy is introducing excess ROS in various ways, such as applying high light doses, high photosensitizer concentrations, and exogenous oxygen. In this study, we report a metallacage-based PDT strategy that minimizes the use of ROS by jointly using gallium-metal organic framework rods to inhibit the production of bacterial endogenous NO, amplify ROS stress, and enhance the killing effect. The augmented bactericidal effect was demonstrated both in vitro and in vivo. This proposed enhanced PDT strategy will provide a new option for bacterial ablation.


Assuntos
Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
4.
Acc Chem Res ; 57(6): 992-1006, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38417011

RESUMO

ConspectusMechanically interlocked polymers (MIPs) such as polyrotaxanes and polycatenanes are polymer architectures that incorporate mechanical bonds, which represent a compelling frontier in polymer science. MIPs with cross-linked structures are known as mechanically interlocked networks (MINs) and are widely utilized in materials science. Leveraging the motion of mechanical bonds, MINs hold the potential for achieving a combination of robustness and dynamicity. Currently, the reported MINs predominantly consist of networks with discrete mechanical bonds as cross-linking points, exemplified by well-known slide-ring materials and rotaxane/catenane cross-linked polymers. The motion of these mechanically interlocked cross-linking points facilitates the redistribution of tension throughout the network, effectively preventing stress concentration and thereby enhancing material toughness. In these instances, the impact of mechanical bonds can be likened to the adage "small things can make a big difference", whereby a limited number of mechanical bonds substantially elevate the mechanical performance of conventional polymers. In addition to MINs cross-linked by mechanical bonds, there is another type of MIN in which their principal parts are polymer chains composed of dense mechanical bonds. Within these MINs, mechanical bonds generally serve as repeating units, and their unique properties stem from integrating and amplifying the function of a large amount of mechanical bonds. Consequently, MINs with dense mechanical bonds tend to reflect the intrinsic properties of mechanical interlocked polymers, making their exploration critical for a comprehensive understanding of MIPs. Nevertheless, investigations into MINs featuring dense mechanical bonds remain relatively scarce.This Account presents a comprehensive overview of our investigation and insights into MINs featuring dense mechanical bonds. First, we delve into the synthetic strategies employed to effectively prepare MINs with dense mechanical bonds, while critically evaluating their advantages and limitations. Through meticulous control of the core interlocking step, three distinct strategies have emerged: mechanical interlocking followed by polymerization, supramolecular polymerization followed by mechanical interlocking, and dynamic interlocking. Furthermore, we underscore the structure-property relationships of MINs with dense mechanical bonds. The macroscopic properties of MINs originate from integrating and amplifying countless microscopic motions of mechanical bonds, a phenomenon we define as an integration and amplification mechanism. Our investigation has revealed detailed motion characteristics of mechanical bonds in bulk mechanically interlocked materials, encompassing the quantification of motion activation energy, discrimination of varying motion distances, and elucidation of the recovery process. Additionally, we have elucidated their influence on the mechanical performance of the respective materials. Moreover, we have explored potential applications of MINs, leveraging their exceptional mechanical properties and dynamicity. These applications include enhancing the toughness of conventional polymers, engineering mechanically adaptive and multifunctional aerogels, and mitigating Li protrusion as interfacial layers in lithium-ion batteries. Finally, we offer our personal perspectives on the promises, opportunities, and key challenges in the future development of MINs with dense mechanical bonds, underscoring the potential for transformative advancements in this burgeoning field.

5.
Chemistry ; : e202401481, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831477

RESUMO

Dynamic polyimines are a class of fascinating dynamic polymers with recyclability and reparability owing to their reversible Schiff-base reactions. However, balancing the dynamic properties and mechanical strength of dynamic polyimines presents a major challenge due to the dissociative and associative nature of the imine bonds. Herein, we introduced bulky fluorene groups and polyether amine into the skeleton of polyimine networks to achieve a tradeoff in comprehensive properties. The resulting dynamic polyimines with fluorene groups (Cardo-DPIs) were successfully synthesized by combining the rigid diamine 9,9-bis(4-aminophenyl)fluorene and the flexible polyether amine, demonstrating a high tensile strength of 64.7 MPa. Additionally, Cardo-DPIs films with more content of rigid fluorene groups exhibited higher water resistance, glass transition temperature and wear-resisting ability. Moreover, the Cardo-DPIs films not only efficiently underwent thermal reshaping, but also exhibited excellent self-healing capabilities and chemical degradation in acidic solutions. Furthermore, the resulting films can achieve fully closed-loop recovery by free amine solution for 2 h at room temperature. This study broadens the scope of dynamic polyimine materials and promotes the balanced development of their functional and mechanical properties.

6.
Angew Chem Int Ed Engl ; 63(28): e202406937, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656692

RESUMO

Polymers are ideally utilized as damping materials due to the high internal friction of molecular chains, enabling effective suppression of vibrations and noises in various fields. Current strategies rely on broadening the glass transition region or introducing additional relaxation components to enhance the energy dissipation capacity of polymeric damping materials. However, it remains a significant challenge to achieve high damping efficiency through structural control while maintaining dynamic characteristics. In this work, we propose a new strategy to develop hyperbranched vitrimers (HBVs) containing dense pendant chains and loose dynamic crosslinked networks. A novel yet weak dynamic transesterification between the carboxyl and boronic acid ester was confirmed and used to prepare HBVs based on poly (hexyl methacrylate-2-(4-ethenylphenyl)-5,5-dimethyl-1,3,2-dioxaborinane) P(HMA-co-ViCL) copolymers. The A B n ${{AB}_{n}}$ -type of macromonomers, the crosslinking points formed by the dynamic covalent connection via the associative exchange, and the weak yet dynamic exchange reaction are the three keys to developing high-performance HBV damping materials. We found that P(HMA-co-ViCL) 20k-40-60 HBV exhibited ultrahigh energy-dissipation performance over a broad frequency and temperature range, attributed to the synergistic effect of dense pendant chains and weak dynamic covalent crosslinks. This unique design concept will provide a general approach to developing advanced damping materials.

7.
Angew Chem Int Ed Engl ; 63(19): e202402394, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499462

RESUMO

Loops are prevalent topological structures in cross-linked polymer networks, resulting from the folding of polymer chains back onto themselves. Traditionally, they have been considered as defects that compromise the mechanical properties of the network, leading to extensive efforts in synthesis to prevent their formation. In this study, we introduce the inclusion of cyclic dibenzo-24-crown-8 (DB24C8) moieties within the polymer network strands to form CCNs, and surprisingly, these loops enhance the mechanical performances of the network, leading to tough elastomers. The toughening effect can be attributed to the unique cyclic structure of DB24C8. The relatively small size and the presence of rigid phenyl rings provide the loops with relatively stable conformations, allowing for substantial energy dissipation upon the application of force. Furthermore, the DB24C8 rings possess a broad range of potential conformations, imparting the materials with exceptional elasticity. The synergistic combination of these two features effectively toughens the materials, resulting in a remarkable 66-fold increase in toughness compared to the control sample of covalent networks. Moreover, the mechanical properties, particularly the recovery performance of the network, can be effectively tuned by introducing guests to bind with DB24C8, such as potassium ions and secondary ammonium salts.

8.
Angew Chem Int Ed Engl ; 63(8): e202318368, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38165266

RESUMO

Inspired by the drawstring structure in daily life, here we report the development of a drawstring-mimetic supramolecular complex at the molecular scale. This complex consists of a rigid figure-of-eight macrocyclic host molecule and a flexible linear guest molecule which could interact through three-point non-covalent binding to form a highly selective and efficient host-guest assembly. The complex not only resembles the drawstring structure, but also mimics the properties of a drawstring with regard to deformations under external forces. The supramolecular drawstring can be utilized as an interlocked crosslinker for poly(methyl acrylate), and the corresponding polymer samples exhibit comprehensive enhancement of macroscopic mechanical performance including stiffness, strength, and toughness.

9.
Angew Chem Int Ed Engl ; 63(27): e202400989, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623921

RESUMO

Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 MPa; 22.93 MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69 MPa; 63.61 MPa; 141.50 MPa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.

10.
Angew Chem Int Ed Engl ; 63(28): e202404481, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38699952

RESUMO

The pursuit of fabricating high-performance graphene films has aroused considerable attention due to their potential for practical applications. However, developing both stretchable and tough graphene films remains a formidable challenge. To address this issue, we herein introduce mechanical bond to comprehensively improve the mechanical properties of graphene films, utilizing [2]rotaxane as the bridging unit. Under external force, the [2]rotaxane cross-link undergoes intramolecular motion, releasing hidden chain and increasing the interlayer slip distance between graphene nanosheets. Compared with graphene films without [2]rotaxane cross-linking, the presence of mechanical bond not only boosted the strength of graphene films (247.3 vs 74.8 MPa) but also markedly promoted the tensile strain (23.6 vs 10.2 %) and toughness (23.9 vs 4.0 MJ/m3). Notably, the achieved tensile strain sets a record high and the toughness surpasses most reported results, rendering the graphene films suitable for applications as flexible electrodes. Even when the films were stretched within a 20 % strain and repeatedly bent vertically, the light-emitting diodes maintained an on-state with little changes in brightness. Additionally, the film electrodes effectively actuated mechanical joints, enabling uninterrupted grasping movements. Therefore, the study holds promise for expanding the application of graphene films and simultaneously inspiring the development of other high-performance two-dimensional films.

11.
Angew Chem Int Ed Engl ; : e202410834, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949776

RESUMO

Type I main-chain polyrotaxanes (PRs) with multiple wheels threaded onto the axle are widely employed to design slide-ring materials. However, Type II main-chain PRs with axles threading into the macrocycles on the polymer backbones have rarely been studied, although they feature special topological structures and dynamic characteristics. Herein, we report the design and preparation of Type II main-chain PR-based mechanically interlocked networks (PRMINs), based on which the relationship between microscopic motion of mechanical bonds on the PRs and macroscopic mechanical performance of materials has been revealed. The representative PRMIN-2 exhibits a robust feature in tensile tests with high stretchability (1680%) and toughness (47.5 MJ/m3). Moreover, it also has good puncture performance with puncture energy of 22.0 mJ. Detailed rheological measurements and coarse-grained molecular dynamics (CGMD) simulation reveal that the embedded multiple [2]rotaxane mechanical bonds on the PR backbones of PRMINs could undergo a synergistic long-range sliding motion under external force, with the introduction of collective dangling chains into the network. As a result, the synchronized motions of coherent PR chains can be readily activated to accommodate network deformation and efficiently dissipate energy, thereby leading to enhanced mechanical performances of PRMINs.

12.
J Am Chem Soc ; 145(1): 567-578, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562646

RESUMO

Mimicking filament sliding in sarcomeres using artificial molecular muscles such as [c2]daisy chains has aroused increasing interest in developing advanced polymeric materials. Although few bistable [c2]daisy chain-based mechanically interlocked polymers (MIPs) with stimuli-responsive behaviors have been constructed, it remains a significant challenge to establish the relationship between microscopic responsiveness of [c2]daisy chains and macroscopic mechanical properties of the corresponding MIPs. Herein, we report two mechanically interlocked networks (MINs) consisting of dense [c2]daisy chains with individual extension (MIN-1) or contraction (MIN-2) conformations decoupled from a bistable precursor, which serve as model systems to address the challenge. Upon external force, the extended [c2]daisy chains in MIN-1 mainly undergo elastic deformation, which is able to assure the strength, elasticity, and creep resistance of the corresponding material. For the contracted [c2]daisy chains, long-range sliding motion occurs along with the release of latent alkyl chains between the two DB24C8 wheels, and accumulating lots of such microscopic motions endows MIN-2 with enhanced ductility and ability of energy dissipation. Therefore, by decoupling a bistable [c2]daisy chain into individual extended and contracted ones, we directly correlate the microscopic motion of [c2]daisy chains with macroscopic mechanical properties of MINs.


Assuntos
Polímeros , Conformação Molecular , Movimento (Física)
13.
J Am Chem Soc ; 145(16): 9011-9020, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052468

RESUMO

Polycatenanes are extremely attractive topological architectures on account of their high degrees of conformational freedom and multiple motion patterns of the mechanically interlocked macrocycles. However, exploitation of these peculiar structural and dynamic characteristics to develop robust catenane materials is still a challenging goal. Herein, we synthesize an oligo[2]catenane that showcases mechanically robust properties at both the microscopic and macroscopic scales. The key feature of the structural design is controlling the force-bearing points on the metal-coordinated core of the [2]catenane moiety that is able to maximize the energy dissipation of the oligo[2]catenane via dissociation of metal-coordination bonds and then activation of sequential intramolecular motions of circumrotation, translation, and elongation under an external force. As such, at the microscopic level, the single-molecule force spectroscopy measurement exhibits that the force to rupture dynamic bonds in the oligo[2]catenane reaches a record high of 588 ± 233 pN. At the macroscopic level, our oligo[2]catenane manifests itself as the toughest catenane material ever reported (15.2 vs 2.43 MJ/m3). These fundamental findings not only deepen the understanding of the structure-property relationship of poly[2]catenanes with a full set of dynamic features but also provide a guiding principle to fabricate high-performance mechanically interlocked catenane materials.

14.
Chemistry ; 29(8): e202203365, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36398470

RESUMO

Weaving technology has been extensively used for manufacturing macroscopic fabrics and satisfying the artistic demands of humans through the ages. Integrating woven geometries into molecular structures is a persistent pursuit, and yet a significant challenge to chemists, owing to the lack of effective methodologies to guide the regular mutual interlacing of molecular strands. In this Concept article, recent progress and related strategies in constructing woven polymer networks (WPNs) are summarized and discussed. An outlook is then given to highlight the future opportunities and challenges in the development of both molecularly woven structures and molecularly woven functional materials.

15.
Chemistry ; 29(18): e202203560, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36510753

RESUMO

Dynamic covalent chemistry opens up great opportunities for a sustainable society by producing reprocessable networks of polymers and even thermosets. However, achieving the closed-loop recycling of polymers with high performance remains a grand challenge. The introduction of aromatic monomers and fluorine into covalent adaptable networks is an attractive method to tackle this challenge. Therefore, we present a facile and universal strategy to focus on the design and applications of polyimine vitrimers containing trifluoromethyl diphenoxybenzene backbones in applications of dynamic covalent polymers. In this study, fluorine-containing polyimine vitrimer networks (FPIVs) were fabricated, and the results revealed that the FPIVs not only exhibited good self-healability, malleability and processability without the aid of any catalyst, but also possessed decent mechanical strength, superior toughness and thermal stability. We hope that this work could provide a novel pathway for the design of high-performance polyimine vitrimers by recycling of plastic wastes.

16.
Angew Chem Int Ed Engl ; 62(37): e202309058, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37491679

RESUMO

Simultaneously introducing covalent and supramolecular cross-links into one system to construct dually cross-linked networks, has been proved an effective approach to prepare high-performance materials. However, so far, features and advantages of dually cross-linked networks compared with those possessing individual covalent or supramolecular cross-linking points are rarely investigated. Herein, on the basis of comparison between supramolecular polymer network (SPN), covalent polymer network (CPN) and dually cross-linked polymer network (DPN), we reveal that the dual cross-linking strategy can endow the DPN with integrated advantages of CPN and SPN. Benefiting from the energy dissipative ability along with the dissociation of host-guest complexes, the DPN shows excellent toughness and ductility similar to the SPN. Meanwhile, the elasticity of covalent cross-links in the DPN could rise the structural stability to a level comparable to the CPN, exhibiting quick deformation recovery capacity. Moreover, the DPN has the strongest breaking stress and puncture resistance among the three, proving the unique property advantages of dual cross-linking method. These findings gained from our study further deepen the understanding of dynamic polymeric networks and facilitate the preparation of high-performance elastomeric materials.

17.
Angew Chem Int Ed Engl ; 62(37): e202306489, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506278

RESUMO

Mechanical bonds have been utilized as promising motifs to construct mechanically interlocked aerogels (MIAs) with mechanical adaptivity and multifunctionality. However, fabricating such aerogels with not only precise chemical structures but also dynamic features remains challenging. Herein, we present MIAs carrying dense [2]rotaxane units, which bestow both the stability and flexibility of the aerogel network. Owing to the stable chemical structure of a [2]rotaxane, MIAs possessing a precise and full-scale mechanically interlocked network could be fabricated with the aid of diverse solvents. In addition, the dynamic nature of the [2]rotaxane resulted in morphologies and mechanical performances of the MIAs that can be dramatically modulated under chemical stimuli. We hope that the structure-property relationship in MIAs will facilitate the development of mechanically interlocked materials and provide novel opportunities toward constructing smart materials with multifunctionalities.

18.
Angew Chem Int Ed Engl ; 62(20): e202302370, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36930044

RESUMO

Supramolecular polymer networks (SPNs) demonstrate great potential in the development of smart materials owing to their attractive dynamic properties. However, as they suffer from the inherent weak bonding of most noncovalent cross-links, it remains a significant challenge to construct SPNs with outstanding mechanical performance. Herein, we exploit the cryptand/paraquat host-guest recognition motifs as cross-links to prepare a class of highly strong and tough SPNs. Unlike those supramolecular cross-links with relatively weak binding abilities, the cryptand-based host-guest interactions have a high association constant and steady complexing structure, which effectively stabilizes the network and resists mechanical deformation under external force. Such favorable structural stability endows our SPNs with greatly enhanced mechanical performance, compared with the control-1 cross-linked by the weakly complexed crown ether/secondary ammonium salt motif (tensile strength: 21.1±0.5 vs 2.8±0.1 MPa; Young's modulus: 102.6±4.8 vs 2.1±0.3 MPa; toughness: 90.4±2.0 vs 10.8±0.6 MJ m-3 ). Moreover, our SPNs also retain abundant dynamic properties including good abilities in energy dissipation, reprocessability, and stimuli-responsiveness. These findings provide novel insights into the preparation of SPNs with enhanced mechanical properties, and promote the development of high-performance intelligent supramolecular materials.

19.
J Am Chem Soc ; 144(2): 872-882, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34932330

RESUMO

Mechanically interlocked networks (MINs) have emerged as an encouraging platform for the development of mechanically robust yet adaptive materials. However, the difficulty in reversibly breaking the mechanical bonds poses a real challenge to MINs as customizable and sustainable materials. Herein, we couple the vitrimer chemistry with mechanically interlocked structures to generate a new class of MINs─referred to as mechanically interlocked vitrimers (MIVs)─to address the challenge. Specifically, we have prepared the acetoacetate-decorated [2]rotaxane that undergoes catalyst-free condensation reaction with two commercially available multiamine monomers to furnish MIVs. Compared with the control whose wheels are nonslidable under applied force, our MIVs with slidable mechanically interlocked motifs showcase enhanced mechanical performance including Young's modulus (18.5 ± 0.9 vs 1.0 ± 0.1 MPa), toughness (3.7 ± 0.1 vs 0.9 ± 0.1 MJ/m3), and damping capacity (98% vs 72%). The structural basis behind unique property profiles is demonstrated to be the force-induced host-guest dissociation and consequential intramolecular sliding of the wheels along the axles. The peculiar behaviors represent a consecutive energy dissipation mechanism, which provides a complement to other pathways that mainly depend on the breaking of sacrificial bonds. Moreover, by virtue of the vitrimer chemistry of vinylogous urethanes, we impart reprocessability and chemical recyclability to the MINs, thereby empowering the reconfiguration of the networks without breaking of the mechanical bonds. Finally, it is disclosed that the intramolecular motions of [2]rotaxanes could accelerate the dynamic exchange of the vinylogous urethane bonds via loosening the network, suggestive of a synergistic effect between the dual dynamic entities.

20.
J Am Chem Soc ; 144(25): 11434-11443, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35696720

RESUMO

Mechanically interlocked molecules are considered promising candidates for the construction of self-adaptive materials by virtue of their fascinating structural and dynamic features. However, it is still a great challenge to fabricate such materials with higher complexity and richer functionality. Herein, we propose the concept of mechanically interlocked aerogels (MIAs) in which the three-dimensional (3D) porous frameworks are made of dense mechanically interlocked modules, thereby enabling the integration of mechanical adaptivity and multifunctionality in a single entity. The lightweight MIA monoliths possess a good appearance and hierarchical meso- and submicron-pores. Profiting from the combination of dynamic mechanical bonds and porous skeletons of aerogels, our MIAs are not only mechanically robust (average Young's modulus = 5.80 GPa and specific modulus = 130.5 kN·m/kg) but also showcase favorable mechanical adaptivity and responsiveness under external stimuli. Taking advantage of the above integrative merits, we demonstrate the multifunctionality of our MIAs in terms of iodine uptake, thermal insulation, and selective adsorption of organic dyes. Our work opens the door to designing intelligent aerogels with delicate topological chemical structures while facilitating the development of mechanically interlocked materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA