Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nature ; 623(7986): 313-318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696288

RESUMO

Metal halide perovskite solar cells (PSCs) represent a promising low-cost thin-film photovoltaic technology, with unprecedented power conversion efficiencies obtained for both single-junction and tandem applications1-8. To push PSCs towards commercialization, it is critical, albeit challenging, to understand device reliability under real-world outdoor conditions where multiple stress factors (for example, light, heat and humidity) coexist, generating complicated degradation behaviours9-13. To quickly guide PSC development, it is necessary to identify accelerated indoor testing protocols that can correlate specific stressors with observed degradation modes in fielded devices. Here we use a state-of-the-art positive-intrinsic-negative (p-i-n) PSC stack (with power conversion efficiencies of up to approximately 25.5%) to show that indoor accelerated stability tests can predict our six-month outdoor ageing tests. Device degradation rates under illumination and at elevated temperatures are most instructive for understanding outdoor device reliability. We also find that the indium tin oxide/self-assembled monolayer-based hole transport layer/perovskite interface most strongly affects our device operation stability. Improving the ion-blocking properties of the self-assembled monolayer hole transport layer increases averaged device operational stability at 50 °C-85 °C by a factor of about 2.8, reaching over 1,000 h at 85 °C and to near 8,200 h at 50 °C, with a projected 20% degradation, which is among the best to date for high-efficiency p-i-n PSCs14-17.

2.
Nature ; 613(7945): 676-681, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379225

RESUMO

The open-circuit voltage (VOC) deficit in perovskite solar cells is greater in wide-bandgap (over 1.7 eV) cells than in perovskites of roughly 1.5 eV (refs. 1,2). Quasi-Fermi-level-splitting measurements show VOC-limiting recombination at the electron-transport-layer contact3-5. This, we find, stems from inhomogeneous surface potential and poor perovskite-electron transport layer energetic alignment. Common monoammonium surface treatments fail to address this; as an alternative, we introduce diammonium molecules to modify perovskite surface states and achieve a more uniform spatial distribution of surface potential. Using 1,3-propane diammonium, quasi-Fermi-level splitting increases by 90 meV, enabling 1.79 eV perovskite solar cells with a certified 1.33 V VOC and over 19% power conversion efficiency (PCE). Incorporating this layer into a monolithic all-perovskite tandem, we report a record VOC of 2.19 V (89% of the detailed balance VOC limit) and over 27% PCE (26.3% certified quasi-steady state). These tandems retained more than 86% of their initial PCE after 500 h of operation.

3.
Nature ; 618(7963): 74-79, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36977463

RESUMO

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.

4.
Nature ; 611(7935): 278-283, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049505

RESUMO

Perovskite solar cells (PSCs) with an inverted structure (often referred to as the p-i-n architecture) are attractive for future commercialization owing to their easily scalable fabrication, reliable operation and compatibility with a wide range of perovskite-based tandem device architectures1,2. However, the power conversion efficiency (PCE) of p-i-n PSCs falls behind that of n-i-p (or normal) structure counterparts3-6. This large performance gap could undermine efforts to adopt p-i-n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit7,8. Here we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface formamidinium ions, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps and terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p-i-n PSCs obtained a PCE of over 25 per cent, along with retaining 87 per cent of the initial PCE after over 2,400 hours of 1-sun operation at about 55 degrees Celsius in air.

5.
Nat Mater ; 23(6): 810-817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684883

RESUMO

For halide perovskites that are susceptible to photolysis and ion migration, iodide-related defects, such as iodine (I2) and iodine vacancies, are inevitable. Even a small number of these defects can trigger self-accelerating chemical reactions, posing serious challenges to the durability of perovskite solar cells. Fortunately, before I2 can damage the perovskites under illumination, they generally diffuse over a long distance. Therefore, detrimental I2 can be captured by interfacial materials with strong iodide/polyiodide (Ix-) affinities, such as fullerenes and perfluorodecyl iodide. However, fullerenes in direct contact with perovskites fail to confine Ix- ions within the perovskite layer but cause detrimental iodine vacancies. Perfluorodecyl iodide, with its directional Ix- affinity through halogen bonding, can both capture and confine Ix-. Therefore, inverted perovskite solar cells with over 10 times improved ultraviolet irradiation and thermal-light stabilities (under 85 °C and 1 sun illumination), and 1,000 times improved reverse-bias stability (under ISOS-V ageing tests) have been developed.

6.
J Am Chem Soc ; 146(17): 11835-11844, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570347

RESUMO

Circularly polarized light emission is a crucial application in imaging, sensing, and photonics. However, utilizing low-energy photons to excite materials, as opposed to high-energy light excitation, can facilitate deep-tissue imaging and sensing applications. The challenge lies in finding materials capable of directly generating circularly polarized nonlinear optical effects. In this study, we introduce a chiral hybrid lead halide (CHLH) material system, R/S-DPEDPb3Br8·H2O (DPED = 1,2-diphenylethylenediammonium), which can directly produce circularly polarized second harmonic generation (CP-SHG) through linearly polarized infrared light excitation, exhibiting a polarization efficiency as high as 37% at room temperature. To understand the spin relaxation mechanisms behind the high polarization efficiency, we utilized two models, so-called D'yakonov-Perel' (DP) and Bir-Aronov-Pikus (BAP) mechanisms. The unique zigzag inorganic frameworks within the hybrid structure are believed to reduce the dielectric confinement and exciton binding energy, thus enhancing spin polarization, especially in regions with a high excitation pump fluence based on the DP mechanism. In the case of low excitation pump fluence, the BAP mechanism dominates, as evidenced by the observed decrease in the polarization ratio from CP-SHG measurement. Using density functional theory analysis, we elucidate how the distinctive 8-coordination environment of lead bromide building blocks effectively suppresses spin-orbit coupling at the conduction band minimum. This suppression significantly diminishes spin-splitting, thereby slowing the spin relaxation rate.

7.
Nature ; 563(7732): 541-545, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405238

RESUMO

Lighting accounts for one-fifth of global electricity consumption1. Single materials with efficient and stable white-light emission are ideal for lighting applications, but photon emission covering the entire visible spectrum is difficult to achieve using a single material. Metal halide perovskites have outstanding emission properties2,3; however, the best-performing materials of this type contain lead and have unsatisfactory stability. Here we report a lead-free double perovskite that exhibits efficient and stable white-light emission via self-trapped excitons that originate from the Jahn-Teller distortion of the AgCl6 octahedron in the excited state. By alloying sodium cations into Cs2AgInCl6, we break the dark transition (the inversion-symmetry-induced parity-forbidden transition) by manipulating the parity of the wavefunction of the self-trapped exciton and reduce the electronic dimensionality of the semiconductor4. This leads to an increase in photoluminescence efficiency by three orders of magnitude compared to pure Cs2AgInCl6. The optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04 per cent bismuth doping emits warm-white light with 86 ± 5 per cent quantum efficiency and works for over 1,000 hours. We anticipate that these results will stimulate research on single-emitter-based white-light-emitting phosphors and diodes for next-generation lighting and display technologies.

9.
J Am Chem Soc ; 145(32): 18007-18014, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540785

RESUMO

Achromatic quarter waveplates (A-QWPs), traditionally constructed from multiple birefringent crystals, can modulate light polarization and retardation across a broad range of wavelengths. This mechanism is inherently related to phase retardation controlled by the fast and slow axis of stacked multi-birefringent crystals. However, the conventional design of A-QWPs requires the incorporation of multiple birefringent crystals, which complicates the manufacturing process and raises costs. Here, we report the discovery of a broadband (540-1060 nm) A-QWP based on a two-dimensional (2D) layered hybrid copper halide (HCH) perovskite single crystal. The 2D copper chloride (CuCl6) layers of the HCH crystal undergo Jahn-Teller distortion and subsequently trigger the in-plane optical birefringence. Its broad range of the wavelength response as an A-QWP is a consequence of the out-of-plane mosaicity formed among the stacked inorganic layers during the single-crystal self-assembly process in the solution phase. Given the versatility of 2D hybridhalide perovskites, the 2D HCH crystal offers a promising approach for designing cost-effective A-QWPs and the ability to integrate other optical devices.

10.
Angew Chem Int Ed Engl ; 62(17): e202215206, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527254

RESUMO

Introducing chirality into the metal-halide hybrids has enabled many emerging properties including chiroptical activity, spin-dependent transport, and ferroelectricity. However, most of the chiral metal-halide hybrids to date are non-emissive, and the underlying mechanism remains elusive. Here, we show a new strategy to turn on the circularly polarized luminescence (CPL) in chiral metal-halide hybrids. We demonstrate that alloying Sb3+ into chiral indium-chloride hybrids dramatically increases the photoluminescence quantum yield in two new series of chiral indium-antimony chlorides. These materials exhibit strong CPL signals with tunable energy and a high dissymmetry factor up to 1.5×10-2 . Mechanistic studies reveal that the emission originates from the self-trapped excitons centered in 5s2 Sb3+ . Moreover, near-ultraviolet pumped white light is demonstrated with a polarization up to 6.0 %. Our work demonstrates new strategies towards highly luminescent chiral metal-halide hybrids.

11.
J Am Chem Soc ; 143(30): 11361-11369, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286970

RESUMO

Heterogeneous photocatalysis is less common but can provide unique avenues for inducing novel chemical transformations and can also be utilized for energy transductions, i.e., the energy in the photons can be captured in chemical bonds. Here, we developed a novel heterogeneous photocatalytic system that employs a lead-halide perovskite nanocrystal (NC) to capture photons and direct photogenerated holes to a surface bound transition metal Cu-site, resulting in a N-N heterocyclization reaction. The reaction starts from surface coordinated diamine substrates and requires two subsequent photo-oxidation events per reaction cycle. We establish a photocatalytic pathway that incorporates sequential inner sphere electron transfer events, photons absorbed by the NC generate holes that are sequentially funneled to the Cu-surface site to perform the reaction. The photocatalyst is readily prepared via a controlled cation-exchange reaction and provides new opportunities in photodriven heterogeneous catalysis.

12.
J Am Chem Soc ; 142(35): 15049-15057, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786780

RESUMO

The advent of the two-dimensional (2D) family of halide perovskites and their demonstration in 2D/three-dimensional (3D) hierarchical film structures broke new ground toward high device performance and good stability. The 2D Dion-Jacobson (DJ) phase halide perovskites are especially attractive in solar cells because of their superior charge transport properties. Here, we report on 2D DJ phase perovskites using a 3-(aminomethyl)piperidinium (3AMP) organic spacer for the fabrication of mixed Pb/Sn-based perovskites, exhibiting a narrow bandgap of 1.27 eV and a long carrier lifetime of 657.7 ns. Consequently, solar cells employing mixed 2D DJ 3AMP-based and 3D MA0.5FA0.5Pb0.5Sn0.5I3 (MA = methylammonium, FA = formamidinium) perovskite composites as light absorbers achieve enhanced efficiency and stability, giving a power conversion efficiency of 20.09% with a high open-circuit voltage of 0.88 V, a fill factor of 79.74%, and a short-circuit current density of 28.63 mA cm-2. The results provide an effective strategy to improve the performance of single-junction narrow-bandgap solar cells and, potentially, to give a highly efficient alternative to bottom solar cells in tandem devices.

13.
J Chem Phys ; 152(6): 064705, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061228

RESUMO

Narrow bandgap mixed tin (Sn) + lead (Pb) perovskites are necessary for the bottom sub-cell absorber in high efficiency all-perovskite polycrystalline tandem solar cells. We report on the impact of mixed cation composition and atmospheric exposure of perovskite films on sub-gap absorption in films and performance of solar cells based on narrow bandgap mixed formamidinium (FA) + methylammonium (MA) and Sn + Pb halide perovskites, (FASnI3)x(MAPbI3)1-x. Structural and optical properties of 0.3 ≤ x ≤ 0.8 (FASnI3)x(MAPbI3)1-x perovskite thin film absorbers with bandgaps ranging from 1.25 eV (x = 0.6) to 1.34 eV (x = 0.3) are probed with and without atmospheric exposure. Urbach energy, which quantifies the amount of sub-gap absorption, is tracked for pristine perovskite films as a function of composition, with x = 0.6 and 0.3 demonstrating the lowest and highest Urbach energies of 23 meV and 36 meV, respectively. Films with x = 0.5 and 0.6 compositions show less degradation upon atmospheric exposure than higher or lower Sn-content films having greater sub-gap absorption. The corresponding solar cells based on the x = 0.6 absorber show the highest device performance. Despite having a low Urbach energy, higher Sn-content solar cells show reduced device performances as the amount of degradation via oxidation is the most substantial.

14.
J Am Chem Soc ; 141(8): 3515-3523, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30646682

RESUMO

Increasing the stability of perovskites is essential for their integration in commercial photovoltaic devices. Halide mixing is suggested as a powerful strategy toward stable perovskite materials. However, the stabilizing effect of the halides critically depends on their distribution in the mixed compound, a topic that is currently under intense debate. Here we successfully determine the exact location of the I and Cl anions in the  CH3NH3PbBr3- yI y and CH3NH3PbBr3- zCl z mixed halide perovskite lattices and correlate it with the enhanced stability we find for the latter. By combining scanning tunneling microscopy and density functional theory, we predict that, for low ratios, iodine and chlorine incorporation have different effects on the electronic properties and stability of the CH3NH3PbBr3 perovskite material. In addition, we determine the optimal Cl incorporation ratio for stability increase without detrimental band gap modification, providing an important direction for the fabrication of stable perovskite devices. The increased material stability induced by chlorine incorporation is verified by performing photoelectron spectroscopy on a half-cell device architecture. Our findings provide an answer to the current debate on halide incorporation and demonstrate their direct influence on device stability.

15.
Angew Chem Int Ed Engl ; 58(39): 13717-13721, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31286608

RESUMO

Organic p-type semiconductors with tunable structures offer great opportunities for hybrid perovskite solar cells (PVSCs). We report herein two dithieno[3,2-b:2',3'-d]pyrrole (DTP) cored molecular semiconductors prepared through π-conjugation extension and an N-alkylation strategy. The as-prepared conjugated molecules exhibit a highest occupied molecular orbital (HOMO) level of -4.82 eV and a hole mobility up to 2.16×10-4  cm2 V-1 s-1 . Together with excellent film-forming and over 99 % photoluminescence quenching efficiency on perovskite, the DTP based semiconductors work efficiently as hole-transporting materials (HTMs) for n-i-p structured PVSCs. Their dopant-free MA0.7 FA0.3 PbI2.85 Br0.15 devices exhibit a power conversion efficiency over 20 %, representing one of the highest values for un-doped molecular HTMs based PVSCs. This work demonstrates the great potential of using a DTP core in designing efficient semiconductors for dopant-free PVSCs.

16.
J Am Chem Soc ; 139(17): 6054-6057, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28420237

RESUMO

Recently, there has been substantial interest in developing double-B-cation halide perovskites, which hold the potential to overcome the toxicity and instability issues inherent within emerging lead halide-based solar absorber materials. Among all double perovskites investigated, In(I)-based Cs2InBiCl6 and Cs2InSbCl6 have been proposed as promising thin-film photovoltaic absorber candidates, with computational examination predicting suitable materials properties, including direct bandgap and small effective masses for both electrons and holes. In this study, we report the intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites by a combination of density functional theory and experimental study. Our results suggest that the In(I)-based double perovskites are unstable against oxidation into In(III)-based compounds. Further, the results show the need to consider reduction-oxidation (redox) chemistry when predicting stability of new prospective electronic materials, especially when less common oxidation states are involved.

17.
Small ; 13(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28060468

RESUMO

Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO2 ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y-SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.

18.
Angew Chem Int Ed Engl ; 56(40): 12107-12111, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28755410

RESUMO

Recently, CuI - and AgI -based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb-based halide perovskite absorbers. However, up to date, only AgI -based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI -based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4-fold coordination, forming [CuX4 ] tetrahedra (X=halogen), but not 6-fold coordination as required for [CuX6 ] octahedra. In contrast, AgI atoms can have both 6- and 4-fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non-perovskites containing [CuX4 ] tetrahedra, as confirmed by our material synthesis efforts.

19.
Angew Chem Int Ed Engl ; 56(28): 8158-8162, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28523742

RESUMO

The double perovskite family, A2 MI MIII X6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3 NH3 PbI3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2 AgBiBr6 as host, band-gap engineering through alloying of InIII /SbIII has been demonstrated in the current work. Cs2 Ag(Bi1-x Mx )Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2 Ag(Bi0.625 Sb0.375 )Br6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed.

20.
J Am Chem Soc ; 138(45): 14998-15003, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27776416

RESUMO

Achieving high open-circuit voltage (Voc) for tin-based perovskite solar cells is challenging. Here, we demonstrate that a ZnS interfacial layer can improve the Voc and photovoltaic performance of formamidinium tin iodide (FASnI3) perovskite solar cells. The TiO2-ZnS electron transporting layer (ETL) with cascade conduction band structure can effectively reduce the interfacial charge recombination and facilitate electron transfer. Our best-performing FASnI3 perovskite solar cell using the cascaded TiO2-ZnS ETL has achieved a power conversion efficiency of 5.27%, with a higher Voc of 0.380 V, a short-circuit current density of 23.09 mA cm-2, and a fill factor of 60.01%. The cascade structure is further validated with a TiO2-CdS ETL. Our results suggest a new approach for further improving the performance of tin-based perovskite solar cells with a higher Voc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA