RESUMO
Mosquito-borne flaviviruses (MBFs) adapt to a dual-host transmission circle between mosquitoes and vertebrates. Dual-host affiliated insect-specific flaviviruses (dISFs), discovered from mosquitoes, are phylogenetically similar to MBFs but do not infect vertebrates. Thus, dISFMBF chimeras could be an ideal model to study the dual-host adaptation of MBFs. Using the pseudoinfectious reporter virus particle and reverse genetics systems, we found dISFs entered vertebrate cells as efficiently as the MBFs but failed to initiate replication. Exchange of the untranslational regions (UTRs) of Donggang virus (DONV), a dISF, with those from Zika virus (ZIKV) rescued DONV replication in vertebrate cells, and critical secondary RNA structures were further mapped. Essential UTR-binding host factors were screened for ZIKV replication in vertebrate cells, displaying different binding patterns. Therefore, our data demonstrate a post-entry cross-species transmission mechanism of MBFs, while UTR-host interaction is critical for dual-host adaptation.
Assuntos
Culicidae , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Adaptação ao Hospedeiro , Mosquitos Vetores , Replicação ViralRESUMO
Pork backfat (PB) contains excessive saturated fatty acids (SFAs), but lacks polyunsaturated fatty acids (PUFAs). Excessive SFAs can be used as a substrate for the growth of certain microorganisms that convert them into PUFAs and monounsaturated fatty acids (MUFAs), and the added value of PB can be enhanced. In this study, Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189 were co-cultured for conversion of PB into fermented pork backfat (FPB) with high level of PUFAs. Our results showed that the content of γ-linolenic acid (GLA) and linoleic acid (LA) in the surface of FPB reached 9.04 ± 0.14 mg/g and 107.31 ± 5.16 mg/g for 7-day fermentation, respectively. To convert the internal SFAs of PB, ultrasound combined with papain was used to promote the penetrative growth of M. circinelloides into the internal PB, and the GLA level in the third layer of fat reached 2.58 ± 0.31 mg/g FPB. The internal growth of M. circinelloides in PB was promoted by adjusting the oxygen rate and ventilation rate through the wind velocity sensor. When the oxygen rate is 2 m/s and the ventilation rate is 18 m3/h, the GLA level in the third layer of fat reached 4.13 ± 1.01 mg/g FPB. To further improve the level of PUFAs in PB, FPB was produced by M. circinelloides at 18 °C. The GLA content on the surface of FPB reached 15.73 ± 1.13 mg/g FPB, and the GLA yield in the second and third layers of fat reached 8.68 ± 1.77 mg/g FPB and 6.13 ± 1.28 mg/g FPB, the LA yield in the second and third layers of fat reached 105.45 ± 5.01 mg/g FPB and 98.46 ± 4.14 mg/g FPB, respectively. These results suggested that excessive SFAs in PB can be converted into PUFAs and provided a new technique for improving PUFAs in FPB. KEY POINTS: ⢠This article achieved the conversion of PUFAs in pork backfat by Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189. ⢠This article solved the internal growth of M. circinelloides CBS277.49 in pork backfat by ultrasound combined with papain. ⢠This article proposed an innovative of promoting the internal growth of M. circinelloides and increasing the PUFAs production by oxygen ventilation in pork backfat.
Assuntos
Mucor , Carne de Porco , Carne Vermelha , Suínos , Animais , Papaína , Ácidos Graxos Insaturados , Ácido Linoleico , OxigênioRESUMO
The aging phenomenon is commonly observed in quantum-dot light emitting diodes (QLEDs), involving complex chemical or physical processes. Resolving the underlying mechanism of these aging issues is crucial to deliver reliable electroluminescent devices in future display applications. Here, we report a reversible positive aging phenomenon that the device brightness and efficiency significantly improve after device operation, but recover to initial states after long-time storage or mild heat treatment, which can be termed as warming-up effects. Steady and transient equivalent circuit analysis suggest that the radiative recombination current dramatically increases but electron leakage from the quantum dots (QDs) to hole transport layer becomes more accessible during the warming-up process. Further analysis discloses that the notable enhancement of device efficiency can be ascribed to the filling of shell traps in gradient alloyed QDs. This work reveals a distinct positive aging phenomenon featured with reversibility, and further guidelines would be provided to achieve stable QLED devices in real display applications.
RESUMO
Inverted perovskite solar cells (PSCs) are preferred for tandem applications due to their superior compatibility with diverse bottom solar cells. However, the solution processing and low formation energy of perovskites inevitably lead to numerous defects at both the bulk and interfaces. We report a facile and effective strategy for precisely modulating the perovskite by incorporating AlOx deposited by atomic layer deposition (ALD) on the top interface. We find that Al3+ can not only infiltrate the bulk phase and interact with halide ions to suppress ion migration and phase separation but also regulate the arrangement of energy levels and passivate defects on the perovskite surface and grain boundaries. Additionally, ALD-AlOx exhibits an encapsulation effect through a dense interlayer. Consequently, the ALD-AlOx treatment can significantly improve the power conversion efficiency (PCE) to 21.80 % for 1.66 electron volt (eV) PSCs. A monolithic perovskite-silicon TSCs using AlOx-modified perovskite achieved a PCE of 28.5 % with excellent photothermal stability. More importantly, the resulting 1.55â eV PSC and module achieved a PCE of 25.08 % (0.04â cm2) and 21.01 % (aperture area of 15.5â cm2), respectively. Our study provides an effective way to efficient and stable wide-band gap perovskite for perovskite-silicon TSCs and paves the way for large-area inverted PSCs.
RESUMO
BACKGROUND: Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber, and has been shown to be effective in inhibiting ulcerative colitis (UC). However, how NaB regulates inflammation and oxidative stress in the pathogenesis of UC is not clear. AIMS: The purpose of this study was to use a dextran sulfate sodium salt (DSS)-induced murine colitis model, and determine the effects of NaB and the related molecular mechanisms. METHODS: Colitis model was induced in mice by administration of 2.5%(wt/vol) DSS. 0.1 M NaB in drinking water, or intraperitoneal injection of NaB (1 g/kg body weight) was given during the study period. In vivo imaging was performed to detect abdominal reactive oxygen species (ROS). Western blotting and RT-PCR were used to determine the levels of target signals. RESULTS: The results showed that NaB decreases the severity of colitis as determined by an improved survival rate, colon length, spleen weight, disease activity index (DAI), and histopathological changes. NaB reduced oxidative stress as determined by a reduction in abdominal ROS chemiluminescence signaling, inhibition of the accumulation of myeloperoxidase and malondialdehyde, and restoration of glutathione activity. NaB activated the COX-2/Nrf2/HO-1 pathway by increasing the expressions of COX-2, Nrf2, and HO-1 proteins. NaB inhibited the phosphorylation of NF-κB and activation of NLRP3 inflammasomes, and reduced the secretion of corresponding inflammatory factors. Furthermore, NaB promoted the occurrence of mitophagy via activating the expression of Pink1/Parkin. CONCLUSIONS: In conclusion, our results indicate that NaB improves colitis by inhibiting oxidative stress and NF-κB/NLRP3 activation, which may be via COX-2/Nrf2/HO-1 activation and mitophagy.
Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Butírico/farmacologia , Sulfato de Dextrana/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitofagia , Ciclo-Oxigenase 2/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/patologia , Transdução de Sinais , Estresse Oxidativo , Cloreto de Sódio , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
(1) The vicious cycle of innate immune response and reactive oxygen species (ROS) generation is an important pathological process of osteoarthritis (OA). Melatonin may be a new hope for the treatment of OA because of its antioxidant capacity. However, the mechanism of melatonin in the treatment of OA is still not completely clear, and the physiological characteristics of articular cartilage make melatonin unable to play a long-term role in OA. (2) The effects of melatonin on ROS and the innate immune response system in OA chondrocytes and the therapeutic effect in vivo were evaluated. Then, a melatonin-loaded nano-delivery system (MT@PLGA-COLBP) was prepared and characterized. Finally, the behavior of MT@PLGA-COLPB in cartilage and the therapeutic effect in OA mice were evaluated. (3) Melatonin can inhibit the activation of the innate immune system by inhibiting the TLR2/4-MyD88-NFκB signal pathway and scavenging ROS, thus improving cartilage matrix metabolism and delaying the progression of OA in vivo. MT@PLGA-COLBP can reach the interior of cartilage and complete the accumulation in OA knee joints. At the same time, it can reduce the number of intra-articular injections and improve the utilization rate of melatonin in vivo. (4) This work provides a new idea for the treatment of osteoarthritis, updates the mechanism of melatonin in the treatment of osteoarthritis, and highlights the application prospect of PLGA@MT-COLBP nanoparticles in preventing OA.
Assuntos
Cartilagem Articular , Melatonina , Nanopartículas , Osteoartrite , Camundongos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Preparações de Ação Retardada/farmacologia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologiaRESUMO
One-dimensional gold/polypyrrole (Au/PPy) nanopeapods were fabricated using a viral template: M13 bacteriophage. The genetically modified filamentous virus displayed gold-binding peptides along its length, allowing selective attachment of gold nanoparticles (Au NPs) under ambient conditions. A PPy shell was electropolymerized on the viral-templated Au NP chains forming nanopeapod structures. The PPy shell morphology and thickness were controlled through electrodeposition potential and time, resulting in an ultra-thin conductive polymer shell of 17.4 ± 3.3 nm. A post-electrodeposition acid treatment was used to modify the electrical properties of these hybrid materials. The electrical resistance of the nanopeapods was monitored at each assembly step. Chemiresistive ammonia (NH3) gas sensors were developed from networks of the hybrid Au/PPy nanostructures. Room temperature sensing performance was evaluated from 5 to 50 ppmv and a mixture of reversible and irreversible chemiresistive behavior was observed. A sensitivity of 0.30%/ppmv was found for NH3 concentrations of 10 ppmv or less, and a lowest detection limit (LDL) of 0.007 ppmv was calculated. Furthermore, acid-treated devices exhibited an enhanced sensitivity of 1.26%/ppmv within the same concentration range and a calculated LDL of 0.005 ppmv.
RESUMO
Brain-inspired electronics with synaptic functions hold significant promise for advancing artificial intelligent applications. In this study, we demonstrate the synaptic feature of quantum-dot light-emitting diodes (QLEDs), which can convert electrical pulses into synapse-like light signals (the brightness gradually increases as the electrical pulses are prolonged). These features are analogous to learning and forgetting in biological synapses. The enhancement of brightness can be attributed to the reduction of charge transfer from the quantum dots to ZnO electron transport layer and resistive switching effect. With an integrated complementary metal-oxide-semiconductor (CMOS) drive, arrayed synaptic QLEDs can simulate the visualization of brain-like learning processes, which can reduce the noise toward high image recognition rate (>95.0%) by deep neural networks. Our findings introduce a novel brain-inspired optoelectronic approach with potential applications in optical neuromorphic systems.
RESUMO
Diabetes-related skin ulcers are of significant clinical concern. Although conventional dressings have been developed, their outcomes have not been adequate, indicating the need to investigate functional dressings for the treatment of diabetic ulcers. Copper selenide nanoparticles (Cu2Se NPs) demonstrate outstanding photoresponsiveness, which is critical to the healing process. However, their limited solubility in water restricts their application. To synthesize the ODT-PMMA@Cu2Se NP-doped decellularized periosteumsodium alginate functional dressing-ODT-PMMA@Cu2Se/ECM-S (OP@Cu2Se/ECM-S), Cu2Se NPs were modified by n-octadecanethiol (ODT) end-functionalized poly (methacrylic acid) (PMAA) ligands homogeneously dispersed in a decellularized periosteum/sodium alginate matrix. This process improved the water solubility and stability. Moreover, under near-infrared irradiation (NIR), ODT-PMMA@Cu2Se demonstrated robust photo-responsiveness along with photothermal and photodynamic effects, leading to rapid heating and stimulation of reactive oxygen species (ROS) generation. These two processes work in concert to exhibit excellent antibacterial ability; at 20 µg/mL concentration of Cu2Se NPs, the bacterial activities of S. aureus and E. coli were 5.40 % and 0.96 %, respectively. Without the NIR laser irradiation, OP@Cu2Se/ECM-S rapidly increased the vascular endothelial growth factor (VEGF) expression, triggered the phosphatidylinositide 3-kinases (PI3K) and protein kinase B (AKT) signaling pathway, affected the expression of bFGF and CD31, and promoted neovascularization, proliferation, and cell migration. In a diabetic mouse wound model, OP@Cu2Se/ECM-S exhibited good biocompatibility and promoted epidermal regeneration, collagen deposition, and neovascularization. In a mouse model of subcutaneous abscesses, OP@Cu2Se/ECM-S also showed excellent antibacterial activity, in vivo experiments confirmed a decrease in bacterial activity to 1.97 %. Thus, OP@Cu2Se/ECM-S is a potentially useful approach for healing diabetic wounds.
Assuntos
Alginatos , Bandagens , Cobre , Diabetes Mellitus Experimental , Periósteo , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Alginatos/química , Alginatos/farmacologia , Cobre/química , Cobre/farmacologia , Periósteo/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Masculino , Staphylococcus aureus/efeitos dos fármacosRESUMO
BACKGROUND: Bacterial nanocellulose (BNC), a natural polymer material, gained significant popularity among researchers and industry. It has great potential in areas, such as textile manufacturing, fiber-based paper, and packaging products, food industry, biomedical materials, and advanced functional bionanocomposites. The main current fermentation methods for BNC involved static culture, as the agitated culture methods had lower raw material conversion rates and resulted in non-uniform product formation. Currently, studies have shown that the production of BNC can be enhanced by incorporating specific additives into the culture medium. These additives included organic acids or polysaccharides. γ-Polyglutamic acid (γ-PGA), known for its high polymerization, excellent biodegradability, and environmental friendliness, has found extensive application in various industries including daily chemicals, medicine, food, and agriculture. RESULTS: In this particular study, 0.15 g/L of γ-PGA was incorporated as a medium additive to cultivate BNC under agitated culture conditions of 120 rpm and 30 â. The BNC production increased remarkably by 209% in the medium with 0.15 g/L γ-PGA and initial pH of 5.0 compared to that in the standard medium, and BNC production increased by 7.3% in the medium with 0.06 g/L γ-PGA. The addition of γ-PGA as a medium additive resulted in significant improvements in BNC production. Similarly, at initial pH levels of 4.0 and 6.0, the BNC production also increased by 39.3% and 102.3%, respectively. To assess the characteristics of the BNC products, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis were used. The average diameter of BNC fibers, which was prepared from the medium adding 0.15 g/L γ-PGA, was twice thicker than that of BNC fibers prepared from the control culture medium. That might be because that polyglutamic acid relieved the BNC synthesis from the shear stress from the agitation. CONCLUSIONS: This experiment held great significance as it explored the use of a novel medium additive, γ-PGA, to improve the production and the glucose conversion rate in BNC fermentation. And the BNC fibers became thicker, with better thermal stability, higher crystallinity, and higher degree of polymerization (DPv). These findings lay a solid foundation for future large-scale fermentation production of BNC using bioreactors.
RESUMO
Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.
Assuntos
Antioxidantes , Bandagens , Beta vulgaris , Celulose , Hidrogéis , Cicatrização , Celulose/química , Celulose/farmacologia , Concentração de Íons de Hidrogênio , Antioxidantes/farmacologia , Antioxidantes/química , Beta vulgaris/química , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Silanos/química , Pigmentos Biológicos/química , Pigmentos Biológicos/farmacologiaRESUMO
The genus Flavivirus consists of viruses with various hosts, including insect-specific flaviviruses (ISFs), mosquito-borne flaviviruses (MBFs), tick-borne flaviviruses (TBFs), and no-known vector (NKV) flaviviruses. Using the reporter viral particle (RVP) system, we found the efficient entry of ISFs into vertebrate cells, MBFs into tick cells, as well as NKVs and TBFs into mosquito cells with similar entry characteristics. By construction of reverse genetics, we found that Yokose virus (YOKV), an NKV, could enter and replicate in mosquito cells but failed to produce infectious particles. The complete removal of the glycosylation modification on the envelope proteins of flaviviruses had no obvious effect on the entry of all MBFs and TBFs. Our results demonstrate an entry-independent host-tropism mechanism and provide a new insight into the evolution of flaviviruses. IMPORTANCE Vector-borne flaviviruses, such as Zika virus, have extremely broad host and cell tropism, even though no critical entry receptors have yet been identified. Using an RVP system, we found the efficient entry of ISFs, MBFs, TBFs, and NKVs into their nonhost cells with similar characteristics. However, glycan-binding proteins cannot serve as universal entry receptors. Our results demonstrate an entry-independent host-tropism mechanism and give a new insight into the cross-species evolution of flaviviruses.
RESUMO
This study evaluated the co-production of pigment and bacterial nanocellulose (BNC) from S. salsa biomass. The extraction of the beet red pigment reduced the salts and flavonoids contents by 82.7%-100%, promoting the efficiencies of enzymatic saccharification of the biomass and the fermentation of BNC from the hydrolysate. SEM analysis revealed that the extraction process disrupted the lignocellulosic fiber structure, and the chemical analysis revealed the lessened cellulase inhibitors, consequently facilitating enzymatic saccharification for 10.4 times. BNC producing strains were found to be hyper-sensitive to NaCl stress, produced up to 400.4% more BNC from the hydrolysate after the extraction. The fermentation results of BNC indicated that the LDU-A strain yielded 2.116 g/L and 0.539 g/L in ES-M and NES-M, respectively. In comparison to the control, the yield in ES-M increased by approximately 20.0%, while the enhancement in NES-M was more significant, reaching 292.6%. After conducting a comprehensive characterization of BNC derived from S. salsa through Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA), the average fiber diameter distribution of these four BNC materials ranges from 22.23 to 33.03 nanometers, with a crystallinity range of 77%-90%. Additionally, they exhibit a consistent trend during the thermal degradation process, further emphasizing their stability in high-temperature environments and similar thermal properties. Our study found an efficient co-production approach of pigment and BNC from S. salsa biomass. Pigment extraction made biomass more physically and chemically digestible to cellulase, and significantly improved BNC productivity and quality.
RESUMO
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Assuntos
Barreira Hematoencefálica , Encefalopatias , Barreira Hematoencefálica/metabolismo , Encéfalo , Encefalopatias/diagnóstico por imagem , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Meios de Contraste/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Microbolhas , Medicina de PrecisãoRESUMO
BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. METHODS: Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. RESULTS: The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. CONCLUSION: In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.