Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(9): 1443-1452, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791216

RESUMO

Anomalous pulmonary venous return (APVR) is a potentially lethal congenital heart disease. Elucidating the genetic etiology is crucial for understanding its pathogenesis and improving clinical practice, whereas its genetic basis remains largely unknown because of complex genetic etiology. We thus performed whole-exome sequencing for 144 APVR patients and 1636 healthy controls and report a comprehensive atlas of APVR-related rare genetic variants. Novel singleton, loss-of-function and deleterious missense variants (DVars) were enriched in patients, particularly for genes highly expressed in the developing human heart at the critical time point for pulmonary veins draining into the left atrium. Notably, PLXND1, encoding a receptor for semaphorins, represents a strong candidate gene of APVR (adjusted P = 1.1e-03, odds ratio: 10.9-69.3), accounting for 4.17% of APVR. We further validated this finding in an independent cohort consisting of 82 case-control pairs. In these two cohorts, eight DVars were identified in different patients, which convergently disrupt the GTPase-activating protein-related domain of PLXND1. All variant carriers displayed strikingly similar clinical features, in that all anomalous drainage of pulmonary vein(s) occurred on the right side and incorrectly connected to the right atrium, which may represent a novel subtype of APVR for molecular diagnosis. Studies in Plxnd1 knockout mice further revealed the effects of PLXND1 deficiency on severe heart and lung defects and cellular abnormalities related to APVR such as abnormal migration and vascular formation of vascular endothelial cells. These findings indicate the important role of PLXND1 in APVR pathogenesis, providing novel insights into the genetic etiology and molecular subtyping for APVR.


Assuntos
Cardiopatias Congênitas , Veias Pulmonares , Síndrome de Cimitarra , Animais , Células Endoteliais , Átrios do Coração , Cardiopatias Congênitas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Camundongos , Veias Pulmonares/anormalidades , Síndrome de Cimitarra/genética
2.
Chembiochem ; 25(3): e202300781, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117648

RESUMO

Heterogeneous chemoenzymatic catalysts differing in their spatial organization and relative orientation of their enzymatic laccase and Pd units confined into macrocellular silica foams were tested on veratryl alcohol oxidation. When operating under continuous flow, we show that the catalytic efficiency of hybrids is significantly enhanced when the Pd(II) complex is combined with a laccase exhibiting a surface located lysine next to the T1 oxidation site of the enzyme.


Assuntos
Lacase , Lacase/metabolismo , Oxirredução , Conformação Molecular
3.
FASEB J ; 37(5): e22935, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086094

RESUMO

Adipose-derived stem cells (ADSCs) enhance fat graft survival by promoting neovascularization. The mechanism that promotes ADSCs differentiation toward pericytes was not known. We treated ADSCs with conditional medium (CM) from endothelial cells (ECs) or human recombinant transforming growth factor ß (TGF-ß) to induce differentiation into pericytes. Pericytes markers, including platelet-derived growth factor receptor ß (PDGFRß), alpha-smooth muscle actin (α-SMA), and desmin, were examined. Pericytes differentiation markers, migration, and their association with ECs were examined in ADSCs transfected with miR-24-3p mimics and inhibitors. Bioinformatics target prediction platforms and luciferase assays were used to investigate whether PDGFRß was directly targeted by miR-24-3p. In vivo, fat mixed with ADSCs transfected with miR-24-3p mimics or inhibitors was implanted subcutaneously on the lower back region of nude mice. Fat grafts were harvested and analyzed at 2, 4, 6, and 8 weeks. Results showed that endogenous TGF-ß derived from CM from EC or human recombinant TGF-ß promoted migration, association with ECs, and induced expression of pericyte markers (PDGFRß, α-SMA, Desmin) in ADSCs. MiR-24-3p directly targeted PDGFRß in ADSCs by lucifer reporter assays. Inhibition of miR-24-3p promoted pericytes differentiation, migration, and association with ECs in ADSCs. Inhibition of miR-24-3p in ADSCs promoted survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis, whereas overexpression of miR-24-3p in ADSCs yielded the opposite results. Collectively, TGF-ß released by ECs induced ADSCs differentiation toward pericytes through miR-24-3p. Downregulation of miR-24-3p in ADSCs induced survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis after fat grafting.


Assuntos
MicroRNAs , Pericitos , Camundongos , Animais , Humanos , Pericitos/metabolismo , Células Endoteliais/metabolismo , Camundongos Nus , Desmina , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo
4.
Bioorg Med Chem Lett ; 102: 129671, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387690

RESUMO

Matrine and indole have antibacterial, anticancer, and other biological activities, in order to develop new antibiotics to solve the problem of multi-drug resistant bacteria. In this paper, we synthesized a series of 29 novel matrine derivatives as potential drug candidates by combining indole analogs and matrine. The antibacterial activity of these compounds was evaluated through minimum inhibitory concentration (MIC) assays against five bacterial strains (S. aureus, C. albicans, P. acnes, P. aeruginosa, and E. coli). The obtained results demonstrated promising antibacterial efficacy, particularly for compounds A20 and A18, which exhibited MICs.au values of 0.021 and 0.031 mg/ml, respectively, against S. aureus. Moreover, compounds A20 and A27 displayed remarkable MICc.al values of 2.806 and 4.519 mg/ml, respectively, against C. albicans, surpassing the performance of the clinical antibiotic penicillin G sodium (0.0368 mg/ml) and fluconazole (4.849 mg/ml). These findings underscore the significant bacteriostatic activity of the matrine derivatives. Furthermore, to gain a deeper understanding 3D-QSAR modeling was employed, revealing the critical influence of steric structure, charge distribution, hydrophobic interactions, and hydrogen bonding within the molecular structure on the bacteriostatic activity of the compounds. Additionally, molecular docking simulations shed light on the interaction between compound A20 and bacterial proteins, highlighting the involvement of hydrogen bonding, hydrophobic interactions, and π-π conjugation in the formation of stable complexes that inhibit the normal functioning of the proteins. This comprehensive analysis provided valuable insights into the antibacterial mechanism of the novel matrine derivatives, offering theoretical support for their potential application as antibiotics.


Assuntos
Antibacterianos , Matrinas , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Indóis/farmacologia
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810252

RESUMO

Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.


Assuntos
Apigenina/genética , Apigenina/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células Endoteliais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aterosclerose , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Camundongos , Fenótipo , Fosforilação , Ligação Proteica , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
6.
Biochem Genet ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581475

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder with an autosomal recessive inheritance pattern. Patients with severe symptoms may suffer respiratory failure, leading to death. The homozygous deletion of exon 7 in the SMN1 gene accounts for nearly 95% of all cases. Population carrier screening for SMA and prenatal diagnosis by amniocentesis for high-risk couples can assist in identifying the risk of fetal disease. We provided the SMA carrier screening process to 55,447 pregnant women in Yancheng from October 2020 to December 2022. Among them, 8185 participated in this process, with a participation rate of around 14.76% (95% CI 14.47-15.06%). Quantitative real-time polymerase chain reaction (qPCR) was used to detect deletions of SMN1 exons 7 and 8 (E7, E8) in screened pregnant women. 127 were identified as carriers (111 cases of E7 and E8 heterozygous deletions, 15 cases of E7 heterozygous deletions, and 1 case of E7 heterozygous deletions and E8 homozygous deletions), resulting in a carrying rate of around 1.55% (95% CI 1.30-1.84%). After genetic counseling, 114 spouses of pregnant women who tested positive underwent SMA carrier screening; three of them were screened as SMA carriers. Multiplexed ligation-dependent probe amplification (MLPA) was used for the prenatal diagnosis of the fetuses of high-risk couples. Two of them exhibited two copies of SMN1 exon 7 (normal), and the pregnancy was continued; one exhibited no copies of SMN1 exon 7 and exon 8 (SMA patient), and the pregnancy was terminated. Analyzing SMN1 mutations in Yancheng and provide clinical evidence for SMA genetic counseling and birth defect prevention. Interventional prenatal diagnosis for high-risk families can promote informed reproductive selection and prepare for the fetus's early treatment.

7.
Dev Psychobiol ; 66(5): e22499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715454

RESUMO

Allostatic load (AL) in pregnant women is associated with maternal and infant health outcomes. Whether physical activity (PA) is a modifiable factor associated with AL during pregnancy is unknown. In this cross-sectional study, including 725 pregnant women in 3 different trimesters, 8 biomarkers were included, and the high-risk quartile approach based on sample distribution was used to construct AL index (ALI). ALI <2 was defined as a low level and ≥2 as a high level. Student's t-test or Mann-Whitney U test and chi-squared test or Fisher exact test were used to compare differences in AL with different demographic characteristics among pregnant women. The relationship between PA and AL in pregnant women was analyzed using a binary logistic regression model. The results show that the detection rate of high-risk AL during pregnancy was 47.3%. In the adjusted model, sufficient PA was related to a lower AL than insufficient PA (OR = .693, 95%CI:.494,.971; p = .033). Compared with low- and high-intensity PAs, moderate-intensity PA was associated with lower AL (OR = .645, 95%CI:.447,.930; p = .019). The results suggest that PA is a modifiable factor related to AL, and intervention is recommended to be carried out in the first trimester to prevent the increased likelihood of high AL as pregnancy progresses. In addition, health care personnel should encourage pregnant women to participate in PA, especially moderate-intensity PA, in order to obtain lower AL and promote maternal and child health.


Assuntos
Alostase , Exercício Físico , Humanos , Feminino , Gravidez , Alostase/fisiologia , Adulto , Exercício Físico/fisiologia , Estudos Transversais , Adulto Jovem
8.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542332

RESUMO

Colorectal cancer (CRC), a prevalent malignant tumor of the digestive system, ranks as the third and second in global incidence and mortality, respectively, in 2020, with 1.93 million new cases (≈10% of all cancers). There are 940,000 deaths (≈9.4% of all cancers), and the incidence of CRC in younger patients (under 50 years of age) has become a new trend. The pathogenesis of CRC is primarily attributed to a series of genetic and epigenetic abnormalities within normal colonic epithelial cells, coupled with the reshaping of the tumor microenvironment in the surrounding stroma. This process leads to the transformation of colorectal adenomas into invasive adenocarcinomas. Although genetic changes are known to be the primary driving force in the occurrence and progression of CRC, recent research indicates that epigenetic regulation serves as a crucial molecular marker in cancer, playing a significant role in the pathological and physiological control of interactions between genetics and the environment. This review discusses the current global epidemiology of CRC, its risk factors, and preventive treatment strategies. The current study explores the latest advancements in the epigenetic regulation of CRC, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These developments hold potential as screening tools, prognostic biomarkers, and therapeutic targets for CRC.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Humanos , Prognóstico , Metilação de DNA/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Biomarcadores , Microambiente Tumoral/genética
9.
Biochem Biophys Res Commun ; 639: 91-99, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476951

RESUMO

The Transmembrane Carboxyl Terminal Domain (TMD) of some Bcl-2 family proteins has been demonstrated to play a key role in modulating apoptosis. We here ustilzed live-cell fluorescence imaging to evaluate how the Bcl-xL TMD (XT) regulate apoptosis. Cell viability assay revealed that XT had strong anti-apoptotic ability similarly to the full-length Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and Bad-YFP or YFP-Bax revealed that XT recruited Bad to mitochondria but prevented Bax translocation to mitochondria, and also significantly suppressed Bad/Bax-mediated apoptosis, indicating that XT prevents the pro-apoptotic function of Bad and Bax. Fluorescence Resonance Energy Transfer (FRET) analyses determined that XT directly interacted with Bad and Bax, and deletion of XT completely eliminated the mitochondrial localization and homo-oligomerization of Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and YFP-Bax revealed that XT significantly prevented mitochondrial Bax oligomerization, resulting in cytosolic Bax distribution. Collectively, XT is necessary for the mitochondrial localization and anti-apoptotic capacity of Bcl-xL, and XT, similarly to the full-length Bcl-xL, forms homo-oligomers on mitochondria to directly interact with Bad and Bax to inhibit their apoptotic functions.


Assuntos
Mitocôndrias , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína bcl-X/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mitocôndrias/metabolismo , Apoptose/fisiologia
10.
New Phytol ; 238(1): 252-269, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631970

RESUMO

High temperature causes devasting effects on many aspects of plant cells and thus enhancing plant heat tolerance is critical for crop production. Emerging studies have revealed the important roles of chromatin modifications in heat stress responses. However, how chromatin is regulated during heat stress remains unclear. We show that heat stress results in heterochromatin disruption coupled with histone hyperacetylation and DNA hypomethylation. Two plant-specific histone deacetylases HD2B and HD2C could promote DNA methylation and relieve the heat-induced heterochromatin decondensation. We noted that most DNA methylation regulated by HD2B and HD2C is lost upon heat stress. HD2B- and HD2C-regulated histone acetylation and DNA methylation are dispensable for heterochromatin maintenance under normal conditions, but critical for heterochromatin stabilization under heat stress. We further showed that HD2B and HD2C promoted DNA methylation through associating with ARGONAUTE4 in nucleoli and Cajal bodies, and facilitating its nuclear accumulation. Thus, HD2B and HD2C act both canonically and noncanonically to stabilize heterochromatin under heat stress. This study not only reveals a novel plant-specific crosstalk between histone deacetylases and key factor of DNA methylation pathway, but also uncovers their new roles in chromatic regulation of plant heat tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Heterocromatina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histona Desacetilases/genética , Cromatina/metabolismo , Metilação de DNA/genética
11.
Phys Chem Chem Phys ; 25(13): 9198-9207, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919363

RESUMO

Bi-based materials are promising electrocatalysts for CO2 reduction but one of the key technological hurdles is the design of stable, active and affordable Bi-based catalysts over a wide potential range. Herein, Bi2S3/CNTs nanocomposites are constructed by anchoring bismuth sulfide (Bi2S3) nanorods onto the multiwalled carbon nanotubes (CNTs) and utilizing them in electrocatalytic CO2 reduction. CNTs, as a support, not only guarantee the conductivity and dispersibility of Bi2S3 nanorods but also improve the electrolyte infiltration and optimize the electronic structure of the Bi2S3. As expected, the Bi2S3/CNTs nanocomposite exhibits a faradaic efficiency for HCOO- (FEHCOO-) of 99.3% with a current density of -20.3 mA cm-2 at -0.91 V vs. RHE. The FEHCOO- is stably maintained at over > 91% in a wide potential window from -0.71 V to -1.31 V. Theoretical calculation analyses reveal that the strong interaction between Bi2S3 and CNTs is conductive to decreasing the energy barrier of *OCHO, stabilizing the intermediate *OCHO, and inhibiting the hydrogen evolution reaction. The current study provides an insightful understanding of the mechanism of the CO2 electroreduction reaction, and paves a new way for developing superior and affordable electrocatalysts.

12.
Int J Neurosci ; : 1-6, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37691590

RESUMO

BACKGROUND: There is a lack of actual and comprehensive data on the detection rate of neuronal surface antibodies in patients with unexplained epilepsy in China. Thus, we attempted to analyze the differences in clinical manifestations, cerebrospinal fluid (CSF) characteristics, seizure types and other aspects of antibody-positive and negative patients, to identify suspected antibody-positive epilepsy patients. METHODS: In total, 137 inpatients with unexplained epilepsy were consecutively included, and neuronal surface antibodies (NSAbs) were detected by serological and/or CSF evaluations. The clinical features and seizure characteristics were analyzed between the NSAb-positive and negative patients. In addition, patients were divided into four groups based on CSF and blood antibody titers. CSF cell count and protein content were analyzed in relation to antibody titers. RESULTS: There were 45 (32.8%) patients tested positive for antibodies. Multivariate analyses revealed that age, mental status changes or memory deterioration, CSF protein, CSF cell count, treatment, days of hospitalization, outcome, duration of symptoms before hospitalization, status epilepticus, and number of antiepileptic drugs were significantly associated with the NSAb-positive group and changes in inflammatory indicators in routine CSF analysis were associated with antibody titers. CONCLUSIONS: A relatively high proportion of patients with unexplained epilepsy have positive NSAbs. Patients with the above clinical characteristics need to be highly suspected of NSAbs positivity and should be tested for antibodies in time to assist treatment. The decrease of CSF cell count and protein content has suggestive value for the decrease of antibody titer, which should be evaluated in the follow-up.

13.
Pharm Dev Technol ; 28(5): 452-459, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37104639

RESUMO

This study aimed to improve the use of YF8, a matrine derivative obtained through chemical transformation of matrine extracted from Sophora alopecuroides. YF8 has demonstrated improved cytotoxicity compared to matrine, but its hydrophobic nature hinders its application. To overcome this, the lipid prodrug YF8-OA was synthesized by linking oleic acid (OA) to YF8 through an ester bond. Although YF8-OA could self-assemble into unique nanostructures in water, it was not sufficiently stable. To enhance the stability of YF8-OA lipid prodrug nanoparticles (LPs), we employed the strategy of PEGylation using DSPE-mPEG2000 or DSPE-mPEG2000 conjugated with folic acid (FA). This resulted in the formation of uniform spherical nanoparticles with greatly improved stability and a maximum drug load capacity upto 58.63%. Cytotoxicity was evaluated in A549, HeLa, and HepG2 cell lines. The results showed that in HeLa cells, the IC50 value of YF8-OA/LPs with FA-modified PEGylation was significantly lower than that of YF8-OA/LPs modified by PEGylation alone. However, no significant enhancement was observed in A549 and HepG2 cells. In conclusion, the lipid prodrug YF8-OA can form nanoparticles in aqueous solution to address its poor water solubility. Modification with FA resulted in further enhanced cytotoxicity, providing a potential avenue for exerting the antitumor activity of matrine analogs.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Oleico , Células HeLa , Ácido Fólico/química , Lipopolissacarídeos , Nanopartículas/química , Antineoplásicos/química
14.
BMC Immunol ; 23(1): 30, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672664

RESUMO

Human peripheral blood mononuclear cells (PBMCs) originate from hematopoietic stem cells in the bone marrow, which mainly includes lymphocytes (T cells, B cells, and natural killer cells) and monocytes. Cryopreserved PBMCs providing biobank resources are crucial for clinical application or scientific research. Here, we used flow cytometry to explore the influence of long-term cryopreservation on the quality of PBMCs with the aim of providing important evidence for the effective utilization of biobank resources. The PBMCs were isolated from the peripheral blood, which was collected from volunteers in the hospital. After long-term cryopreservation in liquid nitrogen, we analyzed the changes in cell numbers, viability, and multiple subtypes of PBMCs and studied the apoptosis, proliferation, activation, function, and status of T cells in comparison with freshly isolated PBMCs by flow cytometry, and then further tracked the effects of long-term cryopreservation on the same sample. Although the different cell types in the PBMCs dynamically changed compared with those in the freshly isolated samples, PBMC recovery and viability remained stable after long-term cryopreservation, and the number of most innate immune cells (e.g., monocytes and B cells) was significantly reduced compared to that of the freshly isolated PBMCs or long-term cryopreserved PBMCs; more importantly, the proportion of T cell subtypes, apoptosis, proliferation, and functional T cells, except for Tregs, were not affected by long-term cryopreservation. However, the proportions of activated T, naïve T, central memory T, effector T, and effector memory T cells dynamically changed after long-term cryopreservation. This article provides important evidence for the effective utilization of biobank resources. Long-term cryopreserved PBMCs can be partly used as biological resources for clinical research or basic studies, but the effect of cryopreservation on PBMCs should be considered when selecting cell samples, especially in research relating to activating or inhibiting function.


Assuntos
Criopreservação , Leucócitos Mononucleares , Apoptose , Citometria de Fluxo , Humanos , Linfócitos
15.
J Cell Sci ; 133(20)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32958707

RESUMO

Bcl-2 family proteins, as central players of the apoptotic program, participate in regulation of the mitochondrial network. Here, a quantitative live-cell fluorescence resonance energy transfer (FRET) two-hybrid assay was used to confirm the homo-/hetero-oligomerization of mitofusins 2 and 1 (MFN2 and MFN1), and also demonstrate the binding of MFN2 to MFN1 with 1:1 stoichiometry. A FRET two-hybrid assay for living cells co-expressing CFP-labeled Bcl-XL (an anti-apoptotic Bcl-2 family protein encoded by BCL2L1) and YFP-labeled MFN2 or MFN1 demonstrated the binding of MFN2 or MFN1 to Bcl-XL with 1:1 stoichiometry. Neither MFN2 nor MFN1 bound with monomeric Bax in healthy cells, but both MFN2 and MFN1 bind to punctate Bax (pro-apoptotic Bcl-2 family protein) during apoptosis. Oligomerized Bak (also known as BAK1; a pro-apoptotic Bcl-2 family protein) only associated with MFN1 but not MFN2. Moreover, co-expression of Bcl-XL with MFN2 or MFN1 had the same anti-apoptotic effect as the expression of Bcl-XL alone to staurosporine-induced apoptosis, indicating the Bcl-XL has its full anti-apoptotic ability when complexed with MFN2 or MFN1. However, knockdown of MFN2 but not MFN1 reduced mitochondrial aggregation induced by overexpression of Bcl-XL, indicating that MFN2 but not MFN1 mediates Bcl-XL-induced mitochondrial aggregation.


Assuntos
GTP Fosfo-Hidrolases , Mitocôndrias , Apoptose , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética
16.
Cancer Cell Int ; 22(1): 97, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193632

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Costimulatory molecules have been proven to be the foundation of immunotherapy. However, the potential roles of costimulatory molecule genes (CMGs) in HCC remain unclear. Our study is aimed to develop a costimulatory molecule-related gene signature that could evaluate the prognosis of HCC patients. METHODS: Based on The Cancer Gene Atlas (TCGA) database, univariate Cox regression analysis was applied in CMGs to identify prognosis-related CMGs. Consensus clustering analysis was performed to stratify HCC patients into different subtypes and compared them in OS. Subsequently, the LASSO Cox regression analysis was performed to construct the CMGs-related prognostic signature and Kaplan-Meier survival curves as well as ROC curve were used to validate the predictive capability. Then we explored the correlations of the risk signature with tumor-infiltrating immune cells, tumor mutation burden (TMB) and response to immunotherapy. The expression levels of prognosis-related CMGs were validated based on qRT-PCR and Human Protein Atlas (HPA) databases. RESULTS: All HCC patients were classified into two clusters based on 11 CMGs with prognosis values and cluster 2 correlated with a poorer prognosis. Next, a prognostic signature of six CMGs was constructed, which was an independent risk factor for HCC patients. Patients with low-risk score were associated with better prognosis. The correlation analysis showed that the risk signature could predict the infiltration of immune cells and immune status of the immune microenvironment in HCC. The qRT-PCR and immunohistochemical results indicated six CMGs with differential expression in HCC tissues and normal tissues. CONCLUSION: In conclusion, our CMGs-related risk signature could be used as a prediction tool in survival assessment and immunotherapy for HCC patients.

17.
Sensors (Basel) ; 22(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808326

RESUMO

This paper presents a geometric approach for real-time forward kinematics of the general Stewart platform, which consists of two rigid bodies connected by six general serial manipulators. By describing the rigid-body motion as exponential of twist, and taking advantage of the product of exponentials formula, a step-by-step derivation of the proposed algorithm is presented. As the algorithm naturally solves all passive joint displacements, the correctness is then verified by comparing the forward-kinematic solutions from all chains. The convergence ability and robustness of the proposed algorithm are demonstrated with large amounts of numerical simulations. In all test cases, the proposed algorithm terminates within four iterations, converging with near-quadratic speed. Finally, the proposed algorithm is also implemented on a mainstream embedded motion controller. Compared with the incremental method, the proposed algorithm is more robust, with an average execution time of 0.48 ms, meeting the requirements of most applications, such as kinematic calibration, motion simulation, and real-time control.


Assuntos
Algoritmos , Fenômenos Biomecânicos , Simulação por Computador , Movimento (Física)
18.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077165

RESUMO

Ferroptosis is a relatively new form of programmed cell death, which can enhance the efficacy of tumor immunotherapy by regulating the tumor microenvironment (TME). In the face of the dilemma of a great difference in the efficacy of immunotherapy for gastric cancer (GC) patients, the exploration of ferroptosis may assist us in predicting immunotherapy efficacy prior to treatment. The potential role of ferroptosis in TME still needs further elucidation. Based on ferroptosis-related genes (FRGs), we systematically evaluated ferroptosis molecular subtypes in gastric cancer. Additionally, the association between these molecular subtypes and the characteristics of TME was examined. A ferroptosis score was constructed to further explore the predictive efficacy of ferroptosis on the immunotherapy response in gastric cancer. There were also 32 other cancers that were evaluated. Three molecular subtypes of ferroptosis in gastric cancer were identified. The three immunophenotypes of tumor immune inflamed, immune excluded, as well as immune desert were mostly in agreement with the TME features of these three subtypes. The individual tumor genetic variation, TME characteristics, immunotherapy response, and prognosis could be assessed by a ferroptosis score. High ferroptosis scores in gastric cancer suggest stromal activation and immunosuppression. It is noted that tumors with a low ferroptosis score are characterized by extensive tumor mutations as well as an immune activation, which are associated with an enhanced immunotherapy response and an improved prognosis. This study reveals that ferroptosis plays an integral role in the regulation of the tumor immune microenvironment. The ferroptosis score may serve as an independent prognostic factor for GC and will deepen our understanding of the TME infiltration mechanisms as well as lead to more rational immunotherapy regimens.


Assuntos
Ferroptose , Neoplasias Gástricas , Ferroptose/genética , Humanos , Imunofenotipagem , Imunoterapia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/terapia , Microambiente Tumoral/genética
19.
Molecules ; 27(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684499

RESUMO

As important biomolecules in Camellia sinensis L., amino acids (AAs) are considered to contribute to the overall green tea sensory quality and undergo dynamic changes during growth. However, limited by analytical capacity, detailed AAs composition in different growth stages remains unclear. To address this question, we analyzed the dynamic changes of 23 AAs during leaf growth in Xinyang Mao Jian (XYMJ) green tea. Using amino acid analyzer, we demonstrated that most AAs are abundant on Pure Brightness Day and Grain Rain Day. After Grain Rain, 23 AAs decreased significantly. Further analysis shows that theanine has a high level on the day before Spring Equinox and Grain Rain, accounting for 44-61% of the total free AAs content in tea leaves. Glu, Pro, and Asp are the second most abundant AAs. Additionally, spinasterol and 22,23-dihydrospinasterol are first purified and identified in ethanol extract of XYMJ by silica gel column chromatography method. This study reveals the relationship between plucking days and the dynamic changes of AAs during the growth stage and proves the rationality of the traditional plucking days of XYMJ green tea.


Assuntos
Camellia sinensis , Fitosteróis , Aminoácidos/metabolismo , Camellia sinensis/química , Fitosteróis/análise , Folhas de Planta/química , Esteróis/análise , Chá/química
20.
Biol Chem ; 402(7): 805-813, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33984882

RESUMO

The molecular pathogenesis of colorectal cancer (CRC) has been widely investigated in recent years. Accumulating evidence has indicated that microRNA (miRNA) dysregulation participates in the processes of driving CRC initiation and progression. Aberrant expression of miR-1301 has been found in various tumor types. However, its role in CRC remains to be elucidated. In the present study, we identified miR-1301 was enriched in normal colorectal tissues and significantly down-regulated in CRC. Decreased level of miR-1301 strongly correlated with aggressive pathological characteristics, including advanced stage and metastasis. Bioinformatics and dual luciferase assay demonstrated that STAT3 is a direct target of miR-1301. Gain and loss-of-function assays showed that miR-1301 had no effect on cell proliferation. Overexpression of miR-1301 suppressed cell migration and invasion capacity of pSTAT3-positive LoVo cells, but not pSTAT3-negative SW480 cells, while inhibition of miR-1301 consistently promoted cell migration and invasion in both cell lines. Additionally, miR-1301 inhibition restored the suppressed migration and invasion of STAT3-knockdown LoVo cells. MiR-1301 functioned as a tumor suppressor to modulate the IL6/STAT3 signaling pathway. In summary, this study highlights the significant role of miR-1301/STAT3 axis in CRC metastasis.


Assuntos
Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA