Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cellulose (Lond) ; 28(1): 241-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33132545

RESUMO

A novel biomaterial ink consisting of regenerated silk fibroin (SF) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (OBC) nanofibrils was developed for 3D printing lung tissue scaffold. Silk fibroin backbones were cross-linked using horseradish peroxide/H2O2 to form printed hydrogel scaffolds. OBC with a concentration of 7wt% increased the viscosity of inks during the printing process and further improved the shape fidelity of the scaffolds. Rheological measurements and image analyses were performed to evaluate inks printability and print shape fidelity. Three-dimensional construct with ten layers could be printed with ink of 1SF-2OBC (SF/OBC = 1/2, w/w). The composite hydrogel of 1SF-1OBC (SF/OBC = 1/1, w/w) printed at 25 °C exhibited a significantly improved compressive strength of 267 ± 13 kPa and a compressive stiffness of 325 ± 14 kPa at 30% strain, respectively. The optimized printing parameters for 1SF-1OBC were 0.3 bar of printing pressure, 45 mm/s of printing speed and 410 µm of nozzle diameter. Furthermore, OBC nanofibrils could be induced to align along the print lines over 60% degree of orientation, which were analyzed by SEM and X-ray diffraction. The orientation of OBC nanofibrils along print lines provided physical cues for guiding the orientation of lung epithelial stem cells, which maintained the ability to proliferate and kept epithelial phenotype after 7 days' culture. The 3D printed SF-OBC scaffolds are promising for applications in lung tissue engineering.

2.
Carbohydr Polym ; 345: 122567, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227104

RESUMO

Solution blowing process was used to prepare cellulose nonwovens, by using N-methyl morpholine-N-oxide (NMMO) as solvent, and salicylic acid (SA) microcapsules as antibacterial additives. The structure and properties of cellulose nonwovens modified with different SA microcapsules contents were compared and evaluated. The results showed that more uniform and denser web structure was formed with the increase of SA microcapsules content, the average fiber diameter of cellulose nonwoven increased from 1.99 µm to 2.65 µm. The air flow resistance and filtration efficiency of cellulose nonwovens increased with addition of SA microcapsules, whereas the mechanical properties, and wearing comfort including air permeability, moisture vapor transfer rate, and softness of cellulose nonwovens decreased slightly, under the same basis weight. SA microcapsules modified cellulose nonwovens exhibited good sustained-release behavior and antimicrobial activity against Escherichia coli. The higher SA microcapsules content in cellulose nonwovens, the faster release rate and the higher antimicrobial activity. The cellulose solution-blown nonwovens modified with SA microcapsules are expected to find applications in medical and healthcare fields due to its antibacterial activity and biodegradability.


Assuntos
Antibacterianos , Cápsulas , Celulose , Escherichia coli , Ácido Salicílico , Solventes , Celulose/química , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Solventes/química , Liberação Controlada de Fármacos , Óxidos N-Cíclicos/química , Soluções , Testes de Sensibilidade Microbiana
3.
Carbohydr Polym ; 261: 117861, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766350

RESUMO

Two kinds of dual-wavelength excitable fluorescent Lyocell fibers, which can be excited by short-wavelength UV/IR or long-wavelength UV/IR radiation, were prepared by dry-jet wet spinning. These fluorescent Lyocell fibers can emit two different fluorescence wavelengths at two different excitation wavelengths, exhibiting double anti-counterfeiting functions, thereby providing higher security. SEM-EDX analysis showed the uniform phosphors distribution in Lyocell fibers. The fluorescent Lyocell fibers were mixed into pulp for papermaking. Addition of dual-wavelength excitable fluorescent Lyocell fibers had no influence on brightness and opacity of papers, and the mechanical properties of papers were similar or even higher than paper with addition of pure Lyocell fibers, although the introduction of phosphors decreased the mechanical properties of Lyocell fibers slightly. Our results proved that dual-wavelength excitable fluorescent Lyocell fibers can be used not only in textile fibers, but also in papermaking to develop various security paper products.

4.
Carbohydr Polym ; 221: 146-156, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227153

RESUMO

One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in the bioink. Large pores and micropores in the scaffolds were achieved by designing printing pattern and lyophilization after extrusion. The pores ranging from 10 to 20 µm inside the printed filaments served as host for cellular infiltration, while the pores with a diameter from 300 to 600 µm circled by printed filaments ensured sufficient nutrient supply. These 3D-printed composite scaffolds with remarkable mechanical properties and hierarchical pore structures are promising for further tissue engineering applications.


Assuntos
Celulose/química , Fibroínas/química , Hidrogéis/química , Nanofibras/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Bactérias/química , Linhagem Celular , Módulo de Elasticidade , Camundongos Endogâmicos ICR , Porosidade , Resistência à Tração , Engenharia Tecidual/métodos
5.
Beilstein J Nanotechnol ; 7: 81-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925356

RESUMO

The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA