Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2309651, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530065

RESUMO

The scientific community is pursuing significant efforts worldwide to develop environmentally viable film materials from biomass, particularly transparent, high-performance regenerated cellulose (RC) films, to replace traditional plastics. However, the inferior mechanical performance and hydrophilic nature of RC films are generally not suitable for use as a substitute for plastics in practical applications. Herein, lignin homogenization is used to synthesize high-performance composite films. The esterified lignin nanoparticles (ELNPs) with dispersible and binding advantages are prepared through esterification and nanometrization. In the presence of ELNPs, RC films exhibit a higher tensile strength (110.4 MPa), hydrophobic nature (103.6° water contact angle, 36.6% water absorption at 120 min, and 1.127 × 10-12 g cm cm-2 s-1 Pa-1 water vapor permeability), and exciting optical properties (high visible and low ultraviolet transmittance). The films further display antioxidant activity, oxygen barrier ability, and thermostability. The films completely biodegrade at 12 and 30% soil moisture. Overall, this study offers new insights into lignin valorization and regenerated cellulose composite films as novel bioplastic materials.

2.
Chem Rev ; 122(13): 11604-11674, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35653785

RESUMO

Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.


Assuntos
Quitina , Nanoestruturas , Biopolímeros , Quitina/química , Nanoestruturas/química
3.
Analyst ; 148(17): 4219-4226, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540136

RESUMO

Nitric oxide (NO), as a critical transcellular messenger, participates in a variety of physiological and pathological processes. However, its real-time detection still faces challenges due to its short half-life and trace amounts. Here, MWCNTs@COF-366-Co was prepared by in situ growth of a cobalt porphyrin-based covalent organic framework (COF-366-Co) on multi-walled carbon nanotubes (MWCNTs), and a unique biosensing platform for ultrasensitive real-time NO determination was established. Remarkably, MWCNTs@COF-366-Co contains plenty of atomically arranged M-N4 active sites for electrocatalysis, which provides more efficient electron transfer pathways and resolves the random arrangement issue of active sites. COF-366-Co with a high surface area contains a large number of exposed active M-N4 sites, providing faster NO transport/diffusion and more efficient electron transfer pathways. Due to the synergy of atomic-level periodic structural features of COF-366-Co and high conductivity of MWCNTs, the MWCNTs@COF-366-Co electrochemical biosensor exhibited excellent NO determination performance in a wide range from 0.09 to 400 µM, with high sensitivity (8.9 µA µM-1 cm-2) and a low limit of detection (16 nM). Moreover, the biosensor has been successfully used to sensitively monitor NO molecules released from human umbilical vein endothelial cells (HUVECs). This research not only designed a multifunctional intelligent biosensor platform, but also provided a broad prospect for continuous dynamic monitoring of the activity of living cells and their released metabolites.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanotubos de Carbono , Porfirinas , Humanos , Nanotubos de Carbono/química , Estruturas Metalorgânicas/química , Óxido Nítrico , Porfirinas/química , Células Endoteliais da Veia Umbilical Humana , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675284

RESUMO

The preparation of adsorbents with eco-friendly and high-efficiency characteristics is an important approach for pollutant removal, and can relieve the pressure of water shortage and environmental pollution. In recent studies, much attention has been paid to the potential of hydrothermal carbonization (HTC) from biomass, such as cellulose, hemicellulose, lignin, and agricultural waste for the preparation of adsorbents. Hereby, this paper summarizes the state of research on carbon adsorbents developed from various sources with HTC. The reaction mechanism of HTC, the different products, the modification of hydrochar to obtain activated carbon, and the treatment of heavy metal pollution and organic dyes from wastewater are reviewed. The maximum adsorption capacity of carbon from different biomass sources was also evaluated.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Biomassa , Corantes , Celulose , Adsorção , Temperatura
5.
J Nanobiotechnology ; 20(1): 312, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794620

RESUMO

BACKGROUND: Bacterial infection in wounds has become a major threat to human life and health. With the growth use of synthetic antibiotics and the elevated evolution of drug resistant bacteria in human body cells requires the development of novel wound curing strategies. Herein, a novel pH-responsive hydrogel (RPC/PB) was fabricated using poly(vinyl alcohol)-borax (PB) and natural antibiotic resveratrol grafted cellulose nanofibrils (RPC) for bacterial-infected wound management. RESULTS: In this hydrogel matrix, RPC conjugate was interpenetrated in the PB network to form a semi-interpenetrating network that exhibited robust mechanical properties (fracture strength of 149.6 kPa), high self-healing efficiency (> 90%), and excellent adhesion performance (tissue shear stress of 54.2 kPa). Interestingly, the induced RPC/PB hydrogel showed pH-responsive drug release behavior, the cumulative release amount of resveratrol in pH 5.4 was 2.33 times than that of pH 7.4, which was adapted well to the acidic wound microenvironment. Additionally, this RPC/PB hydrogel exhibited excellent biocompatibility and antioxidant effect. Moreover, in vitro and in vivo results revealed that such RPC/PB hydrogel had excellent antibacterial, skin tissue regeneration and wound closure capabilities. CONCLUSION: Therefore, the generated RPC/PB hydrogel could be an excellent wound dressing for bacteria-infected wound healing.


Assuntos
Celulose , Hidrogéis , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Bandagens , Celulose/farmacologia , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Resveratrol/farmacologia
6.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806259

RESUMO

Lignin nanoparticles, the innovative achievements in the development and utilization of lignin, combine the structural characteristics of nanomaterials and lignin molecules and have a wide range of applications. In this review, we summarize the methods for preparing lignin nanoparticles by solvent exchange method, mechanical method, biological enzymatic method, interface polymerization/crosslinking method, and spray freezing method, and emphatically introduce the application prospects of lignin nanoparticles in ultraviolet protection, antibacterial, nano-filler, drug delivery, and adsorption, aiming to provide a certain reference direction for additional high-value applications of lignin nanoparticles.


Assuntos
Nanopartículas , Nanoestruturas , Fenômenos Químicos , Lignina/química , Nanopartículas/química , Polimerização
7.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806106

RESUMO

With the increasing demand for dissolving pulp, large quantities of hemicelluloses were generated and abandoned. These hemicelluloses are very promising biomass resources for preparing carbon spheres. However, the pore structures of the carbon spheres obtained from biomass are usually poor, which extensively limits their utilization. Herein, the carbon microspheres derived from hemicelluloses were prepared using hydrothermal carbonization and further activated with different activators (KOH, K2CO3, Na2CO3, and ZnCl2) to improve their electrochemical performance as supercapacitors. After activation, the specific surface areas of these carbon spheres were improved significantly, which were in the order of ZnCl2 > K2CO3 > KOH > Na2CO3. The carbon spheres with high surface area of 2025 m2/g and remarkable pore volume of 1.07 cm3/g were achieved, as the carbon spheres were activated by ZnCl2. The supercapacitor electrode fabricated from the ZnCl2-activated carbon spheres demonstrated high specific capacitance of 218 F/g at 0.2 A/g in 6 M KOH in a three-electrode system. A symmetric supercapacitor was assembled in 2 M Li2SO4 electrolyte, and the carbon spheres activated by ZnCl2 showed excellent electrochemical performance with high specific capacitance (137 F/g at 0.5 A/g), energy densities (15.4 Wh/kg), and good cyclic stability (95% capacitance retention over 2000 cycles).


Assuntos
Polissacarídeos , Capacitância Elétrica , Eletrodos , Porosidade
8.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499668

RESUMO

The application of silver nanoparticles (AgNPs) in antibacterial materials, glucose detection, etc., is of broad interest for researchers around the world. Nanocellulose with many excellent properties can be used as a carrier and stabilizer to assist in the synthesis of AgNPs. In this study, cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) were used to assist in the synthesis of AgNPs under the reduction of glucose and detection of glucose concentration under different conditions. Transmission electron microscopy (TEM) analysis showed that the AgNPs in the nanocellulose-AgNPs (NC-AgNPs) system were roughly spherical and randomly distributed on the nanocellulose. In the whole reaction system, when the concentration of nanocellulose is 0.11 mg/mL, the concentration of silver ammonia solution is 0.6 mM, and the mixing time is 2.5 h, according to the UV-Vis analysis, the absorbance of CNF-AgNPs at 425 nm exhibited a good linear relationship (R2 = 0.9945) with the glucose concentration range (5-50 µM), while the absorbance of CNC-AgNPs at 420 nm showed a good linear relationship (R2 = 0.9956) with the glucose concentration range (5-35 µM). The synthesis of NC-AgNPs can be further developed into a sensor with higher sensitivity and higher stability for detecting glucose concentration and a material with antibacterial effects.


Assuntos
Glucose , Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Celulose/química , Glucose/análise , Nanopartículas Metálicas/química , Prata/química
9.
Anal Chem ; 93(26): 9064-9073, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164977

RESUMO

Peroxynitrite (ONOO-), a kind of reactive oxygen species, plays an indispensable role in many physiological processes. The stability and reactivity of ONOO- are significantly affected by the pH of the environment. A novel fluorescent probe RN-NA that can simultaneously respond to ONOO- and pH was proposed and constructed based on a rational-designed multifunctional fluorescence resonance energy transfer (FRET) platform. The RN-NA probe exhibited a remarkably different fluorescence change in response to ONOO- and pH. The fluorescence signals at 525 and 710 nm increased about 4-fold with a pH change from 8.0 to 3.0. The changes in fluorescence at 525 nm are mainly attributed to photo-induced electron transfer, and the fluorescence enhancement at 710 nm was mainly due to acid-induced open-closed circulation. In the presence of ONOO-, the fluorescence at 525 nm increased 5-fold, while the fluorescence at 710 nm was almost completely diminished. Up to 70-fold fluorescence enhancement was observed in the ratiometric channel F525/F710. In the cell imaging experiment, the intracellular pH was adjusted using H+/K+ ionophore and nigericin, and the endogenous ONOO- was generated by lipopolysaccharide (LPS) and γ-interferon (IFN-γ). The RN-NA probe can respond to cellular pH and endogenous ONOO- with remarkable fluorescence changes in both red/green and ratiometric channels.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácido Peroxinitroso , Corantes Fluorescentes , Concentração de Íons de Hidrogênio
10.
BMC Womens Health ; 21(1): 39, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509177

RESUMO

BACKGROUND: There is a noticeable lack of systematic researches on evaluating the correlation between serum estrogen levels and changes in brain functional areas of perimenopausal women.The aim of this study is to investigate the regional spontaneous brain activity changes in perimenopausal women. METHODS: Based on the resting-state functional magnetic resonance imaging datasets acquired from 25 perimenopausal women and 20 healthy women of reproductive age, a two-sample t-test was performed on individual normalized regional homogeneity (ReHo) maps. Relationships between abnormal ReHo values and the self-rating anxiety scale (SAS), the self-rating depression scale (SDS) were investigated with Pearson correlation analysis. We also investigated the correlation between abnormal ReHo values and serum estrogen level. RESULTS: In the perimenopausal group, we found increased ReHo in the right posterior cerebellum (region 2), left middle frontal gyrus and left middle cingulate gyrus ([Formula: see text]). Additionally, the ReHo values in left middle frontal gyrus and leftt middle cingulate gyrus showed positively significant correlation with the SAS, SDS scores. On the contrary, there was no significant correlation between the ReHo value in right posterior cerebellum and SDS, SAS scores. In the perimenopausal group, the ReHo values in the left middle frontal gyrus and left middle cingulate gyrus were negatively correlated with the serum estrogen level ([Formula: see text]). CONCLUSION: The results of this preliminary study have suggested that abnormal spontaneous activities of multiple brain regions during resting state was already altered in perimenopausal women. Alterative activities might be related to emotional regulation deficits and cognitive impairment, and might potentially represent the neural mechanism underlying perimenopausal period.


Assuntos
Imageamento por Ressonância Magnética , Perimenopausa , Encéfalo/diagnóstico por imagem , Feminino , Humanos
11.
Molecules ; 26(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406704

RESUMO

Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20-200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin-DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology.


Assuntos
Conservação dos Recursos Naturais , Lignina/química , Nanopartículas/química , Nanotecnologia/métodos , Solventes/química , Hidrólise
12.
J Cardiovasc Pharmacol ; 75(2): 168-173, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31663874

RESUMO

BACKGROUND: Identifying patients with high risk of low response to statin therapy is important for optimization of lipid-lowering therapy. Cholesterol 7α-hydroxylase, a rate-limiting enzyme encoded by cytochrome P450 7A1 (CYP7A1) gene, is considered to be associated with statin efficacy. This study aimed to investigate the association between a novel CYP7A1 single nucleotide polymorphism rs3824260 and statin treatment response for hypercholesteremic patients in Chinese Han population. METHODS: A total of 336 subjects were prescribed with simvastatin for 12 weeks after enrollment. Plasma lipid parameters were measured at enrollment and after 12-week simvastatin treatment separately. Subjects were classified into high- and low-response groups depending on their total cholesterol, low-density lipoprotein cholesterol (LDL-C) and TG changes and increase or reduction groups according to their high-density lipoprotein cholesterol (HDL-C) levels changing after simvastatin treatment. The CYP7A1 rs3824260 was genotyped from blood samples with a SNaPshot assay. RESULTS: At baseline, the LDL-C level and TG level were significantly higher in the AA genotype, while the HDL-C level was significantly higher in the GG genotype of CYP7A1 rs3824260. Patients carrying AA genotype are at an increased risk of low response for LDL-C reduction (odds ratio = 2.295, 95% confidence interval = 1.164-4.524, P = 0.016). Furthermore, the GG genotype of rs3824260 was significantly associated with a high risk of HDL-C reduction response after simvastatin therapy (odds ratio = 2.240, 95% confidence interval = 1.137-4.413, P = 0.025). CONCLUSIONS: The CYP7A1 gene polymorphism rs3824260 is related to inappropriate response of simvastatin treatment for hypercholesterolemia patients in Chinese Han population.


Assuntos
Colesterol 7-alfa-Hidroxilase/genética , LDL-Colesterol/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Sinvastatina/uso terapêutico , Triglicerídeos/sangue , Povo Asiático , Biomarcadores/sangue , China , Colesterol 7-alfa-Hidroxilase/metabolismo , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
13.
Angew Chem Int Ed Engl ; 58(42): 14850-14854, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31410950

RESUMO

Black liquor, an industrial waste product of papermaking, is primarily used as a low-grade combustible energy source. Despite its high lignin content, the potential utility of black liquor as a feedstock in products manufacturing, remains to be exploited. Demonstrated here in is the use of black liquor as a primary feed-stock for synthesizing graphene quantum dots that exhibit both up-conversion and photoluminescence when excited using visible/near-infrared radiation, thereby enabling the photosensitization of ultraviolet-absorbing TiO2 nanosheets. In addition, these graphene quantum dots can trap photo-generated electrons to realize the effective separation of electron-hole pairs. Together, these two processes facilitate the solar-powered generation of H2 from H2 O, and CO from H2 O-CO2 , using broadband solar radiation.

14.
Int J Mol Sci ; 18(12)2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168768

RESUMO

A new functional biopolymer was synthesized through an ionic liquid-mediated homogeneous grafting of cinnamic anhydride to xylans. The ionic liquid used was 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid. Xylans with degrees of substitution (DS) between 0.11 and 0.57 were accessible in a completely homogeneous system by changing catalysts (NaOH, KOH and LiOH), time, reaction temperature, and cinnamic anhydride/xylan molar ratio. The chemical structure and the thermal stability of the derivatives were characterized by Fourier transform infrared spectroscopy (FT-IR), 13C-NMR spectroscopy, and thermogravimetry. The thermal stability of the derivatives was reduced compared with the original xylan. Possible applications of the cinnamic anhydride-acylated xylan derivatives include wet-end papermaking, organic-inorganic composite films, and hydrogels.


Assuntos
Cinamatos/química , Líquidos Iônicos/química , Xilanos/química , Adsorção , Catálise , Esterificação , Hidrogéis/química , Íons/química , Espectroscopia de Ressonância Magnética , Metais Pesados/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
15.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143790

RESUMO

Deep eutectic solvents (DESs) are a potentially high-value lignin extraction methodology. DESs prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBD)-lactic acid (Lac), glycerol, and urea-were evaluated for isolation of willow (Salix matsudana cv. Zhuliu) lignin. DESs types, mole ratio of ChCl to HBD, extraction temperature, and time on the fractionated DES-lignin yield demonstrated that the optimal DES-lignin yield (91.8 wt % based on the initial lignin in willow) with high purity of 94.5% can be reached at a ChCl-to-Lac molar ratio of 1:10, extraction temperature of 120 °C, and time of 12 h. Fourier transform infrared spectroscopy (FT-IR) , 13C-NMR, and 31P-NMR showed that willow lignin extracted by ChCl-Lac was mainly composed of syringyl and guaiacyl units. Serendipitously, a majority of the glucan in willow was preserved after ChCl-Lac treatment.


Assuntos
Lignina/química , Lignina/isolamento & purificação , Salix/química , Solventes/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Biol Chem ; 289(33): 22600-22613, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982425

RESUMO

Emerging evidence has shown that microRNAs have key roles in regulating various normal physiological processes, whereas their deregulated expression is correlated with various diseases. The miR-146 family includes miR-146a and miR-146b, with a distinct expression spectrum in different hematopoietic cells. Recent work indicated that miR-146a has a close relationship with inflammation and autoimmune diseases. miR-146-deficient mice have developed some abnormal hematopoietic phenotypes, suggesting the potential functions of miR-146 in hematopoietic development. In this study, we found that miR-146b was consistently up-regulated in both K562 and CD34(+) hematopoietic stem/progenitor cells (HSPCs) undergoing either erythroid or megakaryocytic differentiation. Remarkably, erythroid and megakaryocytic maturation of K562 cells was induced by excess miR-146b but inhibited by decreased miR-146b levels. More importantly, an mRNA encoding receptor tyrosine kinase, namely platelet-derived growth factor receptor α (PDGFRA), was identified and validated as a direct target of miR-146b in hematopoietic cells. Gain-of-function and loss-of-function assays showed that PDGFRA functioned as a negative regulator in erythroid and megakaryocytic differentiation. miR-146b could ultimately affect the expression of the GATA-1 gene, which is regulated by HEY1 (Hairy/enhancer-of-split related with YRPW motif protein 1), a transcriptional repressor, via inhibition of the PDGFRA/JNK/JUN/HEY1 pathway. Lentivirus-mediated gene transfer also demonstrated that the overexpression of miR-146b promoted erythropoiesis and megakaryocytopoiesis of HSPCs via its regulation on the PDGFRA gene and effects on GATA-1 expression. Moreover, we confirmed that the binding of GATA-1 to the miR-146b promoter and induction of miR-146b during hematopoietic maturation were dependent on GATA-1. Therefore, miR-146b, PDGFRA, and GATA-1 formed a regulatory circuit to promote erythroid and megakaryocytic differentiation.


Assuntos
Células Eritroides/metabolismo , Eritropoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , MicroRNAs/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Trombopoese/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Eritroides/citologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Células K562 , Megacariócitos/citologia , Camundongos , MicroRNAs/genética , Regiões Promotoras Genéticas/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
17.
Blood ; 119(21): 4992-5004, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493297

RESUMO

Although microRNAs (miRNAs) are increasingly linked to various physiologic processes, including hematopoiesis, their function in the myeloid development is poorly understood. We detected up-regulation of miR-29a and miR-142-3p during myeloid differentiation in leukemia cell lines and CD34(+) hematopoietic stem/progenitor cells. By gain-of-function and loss-of-function experiments, we demonstrated that both miRNAs promote the phorbol 12-myristate 13-acetate-induced monocytic and all-trans-retinoic acid-induced granulocytic differentiation of HL-60, THP-1, or NB4 cells. Both the miRNAs directly inhibited cyclin T2 gene, preventing the release of hypophosphorylated retinoblastoma and resulting in induction of monocytic differentiation. In addition, a target of miR-29a, cyclin-dependent kinase 6 gene, and a target of miR-142-3p, TGF-ß-activated kinase 1/MAP3K7 binding protein 2 gene, are involved in the regulation of both monocytic and granulocytic differentiation. A significant decrease of miR-29a and 142-3p levels and an obvious increase in their target protein levels were also observed in blasts from acute myeloid leukemia. By lentivirus-mediated gene transfer, we demonstrated that enforced expression of either miR-29a or miR-142-3p in hematopoietic stem/progenitor cells from healthy controls and acute myeloid leukemia patients down-regulated expression of their targets and promoted myeloid differentiation. These findings confirm that miR-29a and miR-142-3p are key regulators of normal myeloid differentiation and their reduced expression is involved in acute myeloid leukemia development.


Assuntos
Diferenciação Celular/genética , Leucemia Mieloide Aguda/genética , MicroRNAs/fisiologia , Células Mieloides/fisiologia , Antineoplásicos/farmacologia , Carcinógenos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/fisiologia , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Tretinoína/farmacologia
18.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543453

RESUMO

Herein, wheat straw residue and pulping waste liquid were collected from pulping mill and mixed to prepare bio-based granular fuels by using compression molding technology, and to explore the comprehensive utilization of the industrial waste of pulping and papermaking. The effects of pulping waste liquid on granular fuel properties were analyzed systemically. Further study of the function of pulping waste liquid, cellulose and hemicellulose was used to replace wheat straw residue and avoid the interference factors. Therefore, the prediction models of granular fuels were established with influencing factors that included cellulose, hemicellulose and pulping waste liquid. The granular fuels had the best performance with 18.30% solid content of pulping waste liquid. The highest transverse compressive strength of granular fuel was 102.61 MPa, and the activation energy was 81.71 KJ·mol-1. A series of curve fitting prediction models were established to clarify the forming process of granular fuel, and it turned out that the pulping waste liquid could improve the adhesion between solid particles and increase their compression resistance.

19.
Int J Biol Macromol ; 242(Pt 2): 124882, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196722

RESUMO

The hemorrhage in daily life was a great challenge for the life health. Before hospitalization and infection, stopping traumatic bleeding timely is an important measure to decrease the death threat. The high crystallinity and low porous structure of chitin (CH) make texture of sole CH sponge not soft enough, which limit its hemostatic properties. In this work, loose corn stalk (CS) was used to modify the structures and properties of sole CH sponge. The novel hemostatic composite sponge of CH/CS4 was prepared by cross-linking and freeze-drying process of chitin and corn stalk suspension. The composite sponge obtained best physical and hemostatic properties at the 1:1 volume ratio of chitin and corn stalk. Thanks to the porous structures, CH/CS4 possessed high water/blood absorption ability (34 ± 2 g/g and 32.7 ± 2 g/g), rapid hemostatic time (31 s) and low blood loss (0.31 g), allowing it to be delivered into the wound bleeding sites to reduce the wound bleeding by robust physical barrier and pressure effect. Furthermore, CH/CS4 displayed excellent hemostatic performance than sole CH and commercial polyvinyl fluoride sponge (PVF). Moreover, CH/CS4 displayed superior wound healing ability and cytocompatibility. Therefore, the CH/CS4 has high potential application in medical hemostatic field.


Assuntos
Quitosana , Hemostáticos , Quitina/farmacologia , Quitina/química , Zea mays , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Cicatrização , Hemorragia/tratamento farmacológico , Quitosana/química
20.
Nanoscale Adv ; 5(2): 356-360, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756262

RESUMO

Here we present a new method to treat cellulose with a sulfamic acid-urea-choline chloride (ternary deep eutectic solvent) system, which can realize both swelling and sulfation of cellulose. This can greatly reduce the energy consumption in the process of cellulose nanoization, and use it to successfully prepare food packaging films for eliminating odors. We hope that due its simplicity and resource-efficiency, this method will have a widespread influence on currently used (nano) cellulose modification protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA