Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microb Cell Fact ; 18(1): 168, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601210

RESUMO

BACKGROUND: Bioethanol is one of the most representative eco-friendly fuels developed to replace the non-renewable fossil fuels and is the most successful commercially available bio-conversion technology till date. With the availability of inexpensive carbon sources, such as cellulosic biomass, bioethanol production has become cheaper and easier to perform, which can facilitate the development of methods for converting ethanol into higher value-added biochemicals. In this study, a bioconversion process using Pseudomonas putida as a biocatalyst was established, wherein ethanol was converted to mevalonate. Since ethanol can be converted directly to acetyl-CoA, bypassing its conversion to pyruvate, there is a possibility that ethanol can be converted to mevalonate without producing pyruvate-derived by-products. Furthermore, P. putida seems to be highly resistant to the toxicity caused by terpenoids, and thus can be useful in conducting terpenoid production research. RESULTS: In this study, we first expressed the core genes responsible for mevalonate production (atoB, mvaS, and mvaE) in P. putida and mevalonate production was confirmed. Thereafter, through an improvement in genetic stability and ethanol metabolism manipulation, mevalonate production was enhanced up to 2.39-fold (1.70 g/L vs. 4.07 g/L) from 200 mM ethanol with an enhancement in reproducibility of mevalonate production. Following this, the metabolic characteristics related to ethanol catabolism and mevalonate production were revealed by manipulations to reduce fatty acid biosynthesis and optimize pH by batch fermentation. Finally, we reached a product yield of 0.41 g mevalonate/g ethanol in flask scale culture and 0.32 g mevalonate/g ethanol in batch fermentation. This is the highest experimental yield obtained from using carbon sources other than carbohydrates till date and it is expected that further improvements will be made through the development of fermentation methods. CONCLUSION: Pseudomonas putida was investigated as a biocatalyst that can efficiently convert ethanol to mevalonate, the major precursor for terpenoid production, and this research is expected to open new avenues for the production of terpenoids using microorganisms that have not yet reached the stage of mass production.


Assuntos
Acetilcoenzima A/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Microrganismos Geneticamente Modificados , Pseudomonas putida , Terpenos/metabolismo , Biocombustíveis , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Pirúvico/metabolismo
2.
J Ind Microbiol Biotechnol ; 44(9): 1301-1311, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28567672

RESUMO

Here, Corynebacterium glutamicum ATCC13032 expressing Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440 was designed to produce 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid. Diverse parameters including cultivation and reaction temperatures, type of detergent, and pH were found to improve biotransformation efficiency. The optimal temperature of cultivation for the production of 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid using whole cells of recombinant C. glutamicum was 15 °C, but the reaction temperature was optimal at 30 °C. Enhanced conversion efficiency was obtained by supplying 0.05 g/L of Tween 80 at pH 7.5. Under these optimal conditions, recombinant C. glutamicum produced 0.28 mM of 9-(nonanoyloxy) nonanoic acid with a 75.6% (mol/mol) conversion yield in 2 h. This is the first report on the biotransformation of 10-ketostearic acid to 9-(nonanoyloxy) nonanoic acid with a recombinant whole-cell C. glutamicum-based biocatalyst and the results demonstrate the feasibility of using C. glutamicum as a whole-cell biocatalyst.


Assuntos
Biocatálise , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Graxos/biossíntese , Biotransformação , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Oxigenases de Função Mista/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Ácidos Esteáricos/metabolismo , Temperatura
3.
Prep Biochem Biotechnol ; 46(4): 410-9, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26176425

RESUMO

Klebsiella pneumoniae is known to produce 2,3-butanediol (2,3-BDO), a valuable chemical. In K. pneumoniae, the 2,3-BDO operon (budBAC) is involved in the production of 2,3-BDO. To observe the physiological role of the 2,3-BDO operon in a mixed acid fermentation, we constructed a budBAC-deleted strain (SGSB109). The production of extracellular metabolites, CO2 emission, carbon distribution, and NADH/NAD(+) balance of SGSB109 were compared with the parent strain (SGSB100). When comparing the carbon distribution at 15 hr, four significant differences were observed: in 2,3-BDO biosynthesis, lactate and acetate production (lactate and acetate production increased 2.3-fold and 4.1-fold in SGSB109 compared to SGSB100), CO2 emission (higher in SGSB100), and carbon substrate uptake (higher in SGSB100). Previous studies on the inactivation of the 2,3-BDO operon were focused on the increase of 1,3-propanediol production. Few studies have been done observing the role of 2,3-BDO biosynthesis. This study provides a prime insight into the role of 2,3-BDO biosynthesis of K. pneumoniae.


Assuntos
Butileno Glicóis/metabolismo , Klebsiella pneumoniae/genética , Óperon , Genes Bacterianos
4.
Bioprocess Biosyst Eng ; 38(11): 2201-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26296382

RESUMO

The integration of transcriptomics and metabolomics can provide precise information on gene-to-metabolite networks for identifying the function of novel genes. The goal of this study was to identify novel gene functions involved in 2,3-butanediol (2,3-BDO) biosynthesis by a comprehensive analysis of the transcriptome and metabolome of five mutated Klebsiella pneumonia strains (∆wabG = SGSB100, ∆wabG∆budA = SGSB106, ∆wabG∆budB = SGSB107, ∆wabG∆budC = SGSB108, ∆wabG∆budABC = SGSB109). First, the transcriptomes of all five mutants were analyzed and the genes exhibiting reproducible changes in expression were determined. The transcriptome was well conserved among the five strains, and differences in gene expression occurred mainly in genes coding for 2,3-BDO biosynthesis (budA, budB, and budC) and the genes involved in the degradation of reactive oxygen, biosynthesis and transport of arginine, cysteine biosynthesis, sulfur metabolism, oxidoreductase reaction, and formate dehydrogenase reaction. Second, differences in the metabolome (estimated by carbon distribution, CO2 emission, and redox balance) among the five mutant strains due to gene alteration of the 2,3-BDO operon were detected. The functional genomics approach integrating metabolomics and transcriptomics in K. Pneumonia presented here provides an innovative means of identifying novel gene functions involved in 2,3-BDO biosynthesis metabolism and whole cell metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Genoma Bacteriano/fisiologia , Klebsiella pneumoniae/metabolismo , Metaboloma/fisiologia , Transcriptoma/fisiologia , Proteínas de Bactérias/genética , Butileno Glicóis/metabolismo , Klebsiella pneumoniae/genética , Mutação
5.
Enzyme Microb Technol ; 132: 109437, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731966

RESUMO

Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won't need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.


Assuntos
Butileno Glicóis/metabolismo , Engenharia Metabólica , Ácido Mevalônico/metabolismo , Pseudomonas putida/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Redes e Vias Metabólicas , Pseudomonas putida/genética
6.
J Biotechnol ; 209: 7-13, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26074000

RESUMO

The objective of this work was to construct a non-pathogenic Klebsiella pneumonia strain that can produce optically high concentrated (R,R)-2,3-BDO. A K. pneumonia mutant lacking the pathogenic factor was used as the host strain. In order to construct a K. pneumonia strain that would biosynthesize high concentrated (R,R)-2,3-BDO, gene deletion and over-expression methods were combined; firstly, the 2,3-BDO dehydrogenase (budC) gene was deleted to re-direct utilization of the carbon source to (R,R)-2,3-BDO biosynthesis; secondly, the two glycerol dehydrogenase (GDH) enzymes in K. pneumonia (DhaD and GldA) were over-expressed to maximize (R,R)-2,3-BDO biosynthesis; and thirdly, the lactate dehydrogenase (ldhA) gene was deleted to minimize the accumulation of lactate. SGSB112, a non-pathogenic strain of K. pneumonia that can produce optically high concentrated (R,R)-2,3-BDO, was constructed as above. Approximately 36% of the carbon source was converted to (R,R)-2,3-BDO by SGSB112, achieving a production of 61gL(-1) (R,R)-2,3-BDO in a fed-batch fermentation. On the other hand, meso-2,3-BDO was produced 1.4gL(-1) and (S,S)-2,3-BDO was not detected. This study provides an insight into 2,3-BDO biosynthesis in K. pneumonia and demonstrates the achievement of high-yield production of optically high concentrated (R,R)-2,3-BDO through constructing a strain by genetic modification and metabolic engineering.


Assuntos
Proteínas de Bactérias/genética , Butileno Glicóis/metabolismo , Melhoramento Genético/métodos , Klebsiella/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Deleção de Genes , Klebsiella/genética , Engenharia Metabólica/métodos
7.
Appl Biochem Biotechnol ; 176(8): 2303-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26113219

RESUMO

The platform chemical 2,3-butanediol (2,3-BDO) is a valuable product that can be converted into several petroleum-based chemicals via simple chemical reactions. Here, we produced 2,3-BDO with the non-pathogenic and rapidly growing Corynebacterium glutamicum. To enhance the 2,3-BDO production capacity of C. glutamicum, we introduced budA encoding acetolactate decarboxylase from Klebsiella pneumoniae, a powerful 2,3-BDO producer. Additionally, budB (encoding α-acetolactate synthase) and budC (encoding acetoin reductase) were introduced from K. pneumoniae to reinforce the carbon flux in the 2,3-BDO production. Because budC had a negative effect on 2,3-BDO production in C. glutamicum, the budB and budA introduced strain, SGSC102, was selected for 2,3-BDO production, and batch culture was performed at 30 °C, 250 rpm and pH 6.86 with pure glucose, molasses, and cassava powder as carbon substrates. After batch culture, significant amount of 2,3-BDO (18.9 and 12.0 g/L, respectively) was produced from 80 g/L of pure glucose and cassava powder.


Assuntos
Butileno Glicóis/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Genética/métodos , Microbiologia Industrial/métodos , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Carbono/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Metaboloma , Reprodutibilidade dos Testes , Especificidade por Substrato
8.
Enzyme Microb Technol ; 73-74: 1-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26002498

RESUMO

Klebsiella pneumoniae (K. pneumoniae), which is a promising microorganism for industrial bulk production of 2,3-butanediol (2,3-BDO), naturally converts glucose to 2,3-BDO. The 2,3-BDO biosynthesis from glucose is composed of three steps; α-acetolactate biosynthesis by α-acetolactate synthase (budB); acetoin biosynthesis by α-acetolactate decarboxylase (budA); and 2,3-BDO biosynthesis by acetoin reductase (budC). In an effort to understand the influence of blocked 2,3-BDO pathway on K. pneumoniae glucose metabolism by budA deletion, we constructed K. pneumoniaeΔwabGΔbudA (SGSB106). Carbon flux distribution analysis, transcriptome analysis and extracellular amino acid concentration analysis were carried out to understand the effects of the budA deletion, and K. pneumoniaeΔwabG (SGSB100) was used as a control strain. Approximately 50.3% decrease in CO2 emission; and approximately 3.8-fold increase in amino acid production was observed in SGSB106. In addition to, among the amino acids, valine production significantly increased, suggesting that the branched-chain amino acid biosynthesis (BACC) in SGSB106 was activated by deletion of budA. Furthermore, whole genome transcriptome analysis of SGSB106 and SGSB100, correlates with the results from carbon distribution and amino acids concentration analyses.


Assuntos
Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Butileno Glicóis/metabolismo , Glucose/metabolismo , Klebsiella pneumoniae/genética , Aminoácidos de Cadeia Ramificada/biossíntese , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Carboxiliases , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Klebsiella pneumoniae/metabolismo , Lactatos/metabolismo
9.
PLoS One ; 9(10): e105322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329548

RESUMO

Klebsiella pneumoniae KCTC2242 has high potential in the production of a high-value chemical, 2,3-butanediol (2,3-BDO). However, accumulation of metabolites such as lactate during cell growth prevent large-scale production of 2,3-BDO. Consequently, we engineered K. pneumoniae to redistribute its carbon flux toward 2,3-BDO production. The ldhA gene deletion and gene overexpression (budA and budB) were conducted to block a pathway that competitively consumes reduced nicotinamide adenine dinucleotide and to redirect carbon flux toward 2,3-BDO biosynthesis, respectively. These steps allowed efficient glucose conversion to 2,3-BDO under slightly acidic conditions (pH 5.5). The engineered strain SGSB105 showed a 40% increase in 2,3-BDO production from glucose compared with that of the host strain, SGSB100. Genes closely related to 2,3-BDO biosynthesis were observed at the gene transcription level by cultivating the SGSB100, SGSB103, SGSB104, and SGSB105 strains under identical growth conditions. Transcription levels for budA, budB, and budC increased approximately 10% during the log phase of cell growth relative to that of SGSB100. Transcription levels of 2,3-BDO genes in SGSB105 remained high during the log and stationary phases. Thus, the carbon flux was redirected toward 2,3-BDO production. Data on batch culture and gene transcription provide insight into improving the metabolic network for 2,3-BDO biosynthesis for industrial applications.


Assuntos
Butileno Glicóis/metabolismo , Carbono/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Engenharia Metabólica , Técnicas de Cultura Celular por Lotes , Fermentação , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/crescimento & desenvolvimento , L-Lactato Desidrogenase/genética , Mutação , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA