Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(44): e202310061, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37707122

RESUMO

Curcumin (Cur) has been clinically used for rheumatoid arthritis treatment by the means of reactive oxygen species (ROS) scavenging and immune microenvironment regulation. However, this compound has a poor water solubility and moderate antioxidative activity, favoring no further broadened application. Metal complexes of curcumin such as zinc-curcumin (Zn-Cur) features enhanced water solubilities, while copper-curcumin (Cu-Cur) shows a higher antioxidant activity but lower solubility than Zn-Cur. Based on their inherent biological properties, this work proposes a nanomedicine-based ion-exchange strategy to enhance the efficacy of Cur for rheumatoid arthritis treatment. Copper silicate nanoparticles with hollow mesoporous structure were prepared to load water-soluble Zn-Cur for constructing a composite nanomedicine, which can degrade in acidic microenvironment of arthritic region, releasing Cu2+ and Zn-Cur. Cu2+ then substitute for Zn2+ in Zn-Cur to form Cu-Cur with a significantly enhanced antioxidative effect, capable of efficiently scavenging ROS in M1 macrophages, promoting their transition to an anti-inflammatory M2 phenotype. In addition, the silicate released after nanocarrier degradation and the Zn2+ released after ion exchange reaction synergistically promote the biomineralization of osteoblasts. This work provides a new approach for enhancing the antiarthritic effect of Cur via an ion-exchange strategy.


Assuntos
Curcumina , Nanopartículas , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/química , Nanomedicina , Espécies Reativas de Oxigênio/metabolismo , Cobre , Troca Iônica , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Água , Nanopartículas/química
2.
J Am Chem Soc ; 144(1): 314-330, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34881869

RESUMO

Mimicking the coordination geometry of the active metal sites of natural enzymes is an efficient strategy in designing therapeutic chemicals with enzymelike in vivo reaction thermodynamics and kinetics. In this study, this chemical concept has been applied for the in situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatment by using rheumatoid arthritis, a common and hardly curable immune-mediated diseases, as an example. Briefly, a composite nanomedicine has been first constructed by loading cationic porphyrin ligands into a manganese-engineered mesoporous silica nanocarrier, which can respond to a mildly acidic environment to concurrently release manganous ions and porphyrin ligands, enabling their subsequent coordination and synthesis of manganese porphyrin with a coordination environment of an active Mn site similar to those of the metal sites in natural superoxide dismutase (SOD) and catalase. Due to the strong metal-ligand exchange coupling enabled by the N-ethylpyridinium-2-yl groups tetrasubstituted in the meso positions of N4-macroheterocycles, such a manganese porphyrin presents the SOD-like activity of disproportionating superoxide anions via outer-sphere proton-coupled one-electron transfer (diaquamanganese(III)/monoaquamanganese(II) cycling), as well as the catalase-like activity of disproportionating hydrogen peroxide via inner-sphere proton-coupled two-electron transfer (diaquamanganese(III)/dioxomanganese(V) cycling). Cellular experiments demonstrated the high antioxidative efficacy of the composite nanomedicine in M1 macrophages by promoting their polarization shift to the anti-inflammatory M2 phenotype. Equally importantly, the silicon-containing oligomers released from the manganese silicate nanocarrier can act as heterogeneous nucleation centers of hydroxyapatite for facilitating biomineralization by bone mesenchymal stem cells. Finally, an in vivo adjuvant-induced arthritis animal model further reveals the high efficacy of the nanomedicine in treating rheumatoid arthritis.


Assuntos
Metaloporfirinas
3.
Angew Chem Int Ed Engl ; 61(17): e202200480, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35143118

RESUMO

Fenton reactions have been recently applied in tumor catalytic therapy, whose efficacy suffers from the unsatisfactory reaction kinetics of Fe3+ to Fe2+ conversion. Here we introduce a co-catalytic concept in tumor catalytic therapy by using a two-dimensional molybdenum disulfide (MoS2 ) nanosheet atomically dispersed with Fe species. The single-atom Fe species act as active sites for triggering Fenton reactions, while the abundant sulfur vacancies generated on the nanosheet favor electron capture by hydrogen peroxide for promoting hydroxyl radical production. Moreover, the 2D MoS2 support also acts as a co-catalyst to accelerate the conversion of Fe3+ to Fe2+ by the oxidation of active Mo4+ sites to Mo6+ , thereby promoting the whole catalytic process. The 2D nanocatalyst exhibits a desirable catalytic performance, as well as a significantly enhanced anticancer efficacy both in vitro and in vivo, which indicates the feasibility for applying such a co-catalytic concept in tumor therapy.


Assuntos
Molibdênio , Neoplasias , Catálise , Humanos , Peróxido de Hidrogênio/química , Neoplasias/tratamento farmacológico , Oxirredução
4.
Med Sci Monit ; 26: e918881, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32417848

RESUMO

BACKGROUND This retrospective study aimed to investigate the epidemiology of burns to the hand, including the causes, demographic data, management, and outcome in a single center in Southwest China between 2012 and 2017. MATERIAL AND METHODS A retrospective study included 470 patients with hand burns who were treated at a single hospital in Southwest China between 2012 and 2017. Demographic, injury-related, and clinical data were obtained from the clinical electronic data collection system. RESULTS In 470 patients, men were more commonly admitted to hospital with hand burns (73.62%). Children under 10 years (29.57%) were the main patient group. Hospital admissions occurred in the coldest months, from December to March (55.11%). In 60.21% of cases, hand burns occurred outside the workplace. Fire (40.42%), electricity (30.85%), and hot liquids (20.21%) were the main causes of hand burns. Data from 428 patients showed that burns with a larger total body surface area and deeper burns were associated with surgery and amputation. Burn depth was a risk factor for skin grafting, and lack of burn cooling before hospital admission increased the risk of amputation. Data from 117 patients with localized burns showed that full-thickness burns and lack of cooling before admission were associated with an increased hospital stay. CONCLUSIONS The findings suggest that in Southwest China, prevention programs for children aged 0-9 years, injuries occurring in winter and non-workplace sites, and fire burns were imperative.


Assuntos
Unidades de Queimados/estatística & dados numéricos , Queimaduras/fisiopatologia , Traumatismos da Mão/epidemiologia , Prevenção de Acidentes/métodos , Distribuição por Idade , Queimaduras/epidemiologia , China/epidemiologia , Feminino , Mãos , Hospitalização , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Estudos Retrospectivos , Fatores de Risco , Transplante de Pele/métodos , Resultado do Tratamento
5.
Behav Brain Funct ; 14(1): 12, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884193

RESUMO

BACKGROUND: Predatory stress as a psychological stressor can elicit the activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is involved in the dialogue of the neuroimmunoendocrine network. The brain has been proven to regulate the activity of the HPA axis by way of lateralization. In the present study, we probed the pivotal elements of the HPA circuitry including CRH, GR and a multifunctional cytokine in behavior-lateralized mice to determine their changes when the animals were subjected to predator exposure. METHODS: Behavior-lateralized mice were classified into left-pawed and right-pawed mice through a paw-preference test. Thereafter, mice in the acute stress group received a single 60-min cat exposure, and mice in the chronic group received daily 60-min cat exposure for 14 consecutive days. The plasma CS and TNF-α were determined by ELISA, the hypothalamic CRH mRNA and hippocampal GR mRNA were detected by real-time PCR, and the hippocampal GR protein was detected by western blot analysis. RESULTS: The results revealed that the levels of plasma CS were significantly elevated after chronic predatory exposure in both right-pawed and left-pawed mice; the right-pawed mice exhibited a higher plasma CS level than the left-pawed mice. Similarly, the acute or chronic cat exposure could induce the release of plasma TNF-α, and the left-pawed mice tended to show a higher level after the acute stress. Chronic stress significantly upregulated the expression of hypothalamic CRH mRNA in both left-pawed and right-pawed mice. Normally, the left-pawed mice exhibited a higher GR expression in the hippocampus than the right-pawed mice. After the cat exposure, the expression of GR in both left-pawed and right-pawed mice was revealed to be greatly downregulated. CONCLUSION: Our findings indicate that predatory stress can invoke a differential response of stressful elements in behavior-lateralized mice. Some of these responses shaped by behavioral lateralization might be helpful for facilitating adaption to various stimuli.


Assuntos
Lateralidade Funcional/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Comportamento Predatório/fisiologia , Estresse Psicológico/sangue , Estresse Psicológico/psicologia , Animais , Gatos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
J Nanobiotechnology ; 16(1): 89, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419925

RESUMO

BACKGROUND: Developing an ideal wound dressing that meets the multiple demands of good biocompatibility, an appropriate porous structure, superior mechanical property and excellent antibacterial activity against drug-resistant bacteria is highly desirable for clinical wound care. Biocompatible thermoplastic polyurethane (TPU) membranes are promising candidates as a scaffold; however, their lack of a suitable porous structure and antibacterial activity has limited their application. Antibiotics are generally used for preventing bacterial infections, but the global emergence of drug-resistant bacteria continues to cause social concerns. RESULTS: Consequently, we prepared a flexible dressing based on a TPU membrane with a specific porous structure and then modified it with a biomimetic polydopamine coating to prepare in situ a nano-silver (NS)-based composite via a facile and eco-friendly approach. SEM images showed that the TPU/NS membranes were characterized by an ideal porous structure (pore size: ~ 85 µm, porosity: ~ 65%) that was decorated with nano-silver particles. ATR-FITR and XRD spectroscopy further confirmed the stepwise deposition of polydopamine and nano-silver. Water contact angle measurement indicated improved surface hydrophilicity after coating with polydopamine. Tensile testing demonstrated that the TPU/NS membranes had an acceptable mechanical strength and excellent flexibility. Subsequently, bacterial suspension assay, plate counting methods and Live/Dead staining assays demonstrated that the optimized TPU/NS2.5 membranes possessed excellent antibacterial activity against P. aeruginosa, E. coli, S. aureus and MRSA bacteria, while CCK8 testing, SEM observations and cell apoptosis assays demonstrated that they had no measurable cytotoxicity toward mammalian cells. Moreover, a steady and safe silver-releasing profile recorded by ICP-MS confirmed these results. Finally, by using a bacteria-infected (MRSA or P. aeruginosa) murine wound model, we found that TPU/NS2.5 membranes could prevent in vivo bacterial infections and promote wound healing via accelerating the re-epithelialization process, and these membranes had no obvious toxicity toward normal tissues. CONCLUSION: Based on these results, the TPU/NS2.5 nanocomposite has great potential for the management of wounds, particularly for wounds caused by drug-resistant bacteria.


Assuntos
Antibacterianos/química , Indóis/química , Nanocompostos/química , Polímeros/química , Poliuretanos/química , Prata/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Antibacterianos/toxicidade , Bandagens , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Liberação Controlada de Fármacos , Farmacorresistência Bacteriana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos/uso terapêutico , Nanocompostos/toxicidade , Tamanho da Partícula , Porosidade , Propriedades de Superfície
7.
BMC Pediatr ; 16(1): 161, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27741941

RESUMO

BACKGROUND: Nasal colonization with bacterial pathogens is associated with risk of invasive respiratory tract infections, but the related information for Chinese healthy children is scarce. METHODS: This cross-sectional study was conducted with healthy children from 6 kindergartens in the Chaoshan region, southern China during 2011-2012. Nasal swabs were examined for five common bacterial pathogens: Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella catarrhalis, and Staphylococcus aureus. RESULTS: Among 1,088 children enrolled, 79.6 % (866) were target-bacterial carriers, of which 34.4 % (298/866) were positive for ≥2 bacteria species. The most common pathogen in the bacterial carriers was M. catarrhalis (76.6 %), followed by S. pneumoniae (26.6 %), S. aureus (21.8 %), H. parainfluenzae (12.7 %), and H. influenzae (2.3 %). Multiple logistic regression analyses showed negative associations between age and the overall or multiple bacterial carriage, and between the father's education level and multiple bacterial carriage (all p < 0.05). Age was negatively associated with the carriage of M. catarrhalis and S. pneumoniae, and positively associated with the S. aureus carriage (all p < 0.0001). CONCLUSIONS: This study shows high nasal carriage of common pathogenic bacteria and coexistence of multiple pathogens in healthy Chaoshan kindergarten children, with M. catarrhalis as the commonest colonizer. Increasing age of children and higher paternal education are associated with lower risk of bacterial carriage. Longitudinal follow-up studies would be helpful for better understanding the infection risk in bacterial pathogen carriers.


Assuntos
Portador Sadio/epidemiologia , Infecções por Haemophilus/epidemiologia , Infecções por Moraxellaceae/epidemiologia , Mucosa Nasal/microbiologia , Infecções Pneumocócicas/epidemiologia , Infecções Estafilocócicas/epidemiologia , Portador Sadio/diagnóstico , Criança , Pré-Escolar , China/epidemiologia , Estudos Transversais , Feminino , Infecções por Haemophilus/diagnóstico , Haemophilus influenzae/isolamento & purificação , Haemophilus parainfluenzae/isolamento & purificação , Humanos , Masculino , Moraxella catarrhalis/isolamento & purificação , Infecções por Moraxellaceae/diagnóstico , Infecções Pneumocócicas/diagnóstico , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/isolamento & purificação , Streptococcus pneumoniae/isolamento & purificação
8.
J Invest Dermatol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838771

RESUMO

Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early proinflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to proresolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. In this study, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast-derived exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet they also accelerated timely switching from M1 to M2 phenotypes. Exosome inhibition dysregulated macrophage responses, resulting in aberrant inflammation and impaired healing, whereas provision of exogenous fibroblast-derived exosomes corrected defects. Topical application of fibroblast-derived exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.

9.
iScience ; 27(4): 109545, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617557

RESUMO

Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.

10.
J Invest Dermatol ; 143(4): 648-660.e6, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36309321

RESUMO

The transition from the proinflammatory phase to the prohealing phase in wound healing is essential for effective skin wound repair, which involves the balance of M1 and M2 polarization of wound-infiltrating macrophages. P311 plays an essential role in promoting wound closure by enhancing the biological function of epidermal stem cells, endothelial cells, and fibroblasts. Nevertheless, whether and how P311 regulates macrophage polarization remains unclear. In this study, we showed that P311 deficiency reduced the M2 polarization of macrophages, thereby attenuating the secretion of M2-like cytokines. The P311 deficiency prolonged the transition from the proinflammatory phase to the prohealing phase, accompanied by weakened angiogenesis and retarded granulation tissue formation, both of which coordinately hinder the healing of skin wounds. Mechanistically, P311 deficiency downregulated the expression of IL-4 receptor on macrophages, followed by less activation of the IL-4 receptor‒signal transducer and activator of transcription 6 signaling pathway, resulting in impaired M2 macrophage polarization. We further revealed that the mTOR signaling pathway was associated with the regulation of P311 on the expression of IL-4 receptor in macrophages. Thus, our study has highlighted the pivotal role of P311 in promoting the M2 polarization of macrophages for effective skin wound healing.


Assuntos
Células Endoteliais , Pele , Pele/lesões , Macrófagos/metabolismo , Cicatrização , Transdução de Sinais
11.
Nat Commun ; 13(1): 1988, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418125

RESUMO

Constructing nanomaterials mimicking the coordination environments of natural enzymes may achieve biomimetic catalysis. Here we construct a two-dimensional (2D) metal-organic framework (MOF) nanosheet catalyst as an artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. The 2D MOF periodically assembles numbers of manganese porphyrin molecules, which has a metal coordination geometry analogous to those of two typical antioxidases, human mitochondrial manganese superoxide dismutase (Mn-SOD) and human erythrocyte catalase. The zinc atoms of the 2D MOF regulate the metal-centered redox potential of coordinated manganese porphyrin ligand, endowing the nanosheet with both SOD- and catalase-like activities. Cellular experiments show unique anti-inflammatory and pro-biomineralization performances of the 2D MOF, while in vivo animal model further demonstrates its desirable antiarthritic efficacy. It is expected that such a nanocatalytic antioxidation concept may provide feasible approaches to future anti-inflammatory treatments.


Assuntos
Artrite Reumatoide , Estruturas Metalorgânicas , Porfirinas , Animais , Artrite Reumatoide/tratamento farmacológico , Biocatálise , Catalase , Íons , Manganês , Superóxido Dismutase
12.
Front Immunol ; 13: 875076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479079

RESUMO

For the skin immune system, γδ T cells are important components, which help in defensing against damage and infection of skin. Compared to the conventional αß T cells, γδ T cells have their own differentiation, development and activation characteristics. In adult mice, dendritic epidermal T cells (DETCs), Vγ4 and Vγ6 γδ T cells are the main subsets of skin, the coordination and interaction among them play a crucial role in wound repair. To get a clear overview of γδ T cells, this review synopsizes their derivation, development, colonization and activation, and focuses their function in acute and chronic wound healing, as well as the underlining mechanism. The aim of this paper is to provide cues for the study of human epidermal γδ T cells and the potential treatment for skin rehabilitation.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Animais , Epiderme , Camundongos , Pele , Cicatrização
13.
Stem Cell Res Ther ; 13(1): 121, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313958

RESUMO

BACKGROUND: Efficient re-epithelialization is important for successful skin wound healing. The proportion of epidermal stem cells (EpSCs) and dendritic epidermal T cells (DETCs) determines the extent of wound re-epithelialization, especially in large areas of skin tissue loss. However, it remains unknown whether and how DETCs regulate the status of EpSCs to impact wound re-epithelialization. METHODS: To investigate how DETCs regulate EpSCs in skin re-epithelialization, we utilized normal or full-thickness skin deficient wide type (WT) mice and Tcrσ knockout (Tcrσ-/-) mice with DETCs or DETCs-derived exosomes (Exos) treatment. Flow cytometry analysis (FCAS), BrdU labelled experiments, immunofluorescence and immunohistochemical assays were performed to detect the proportion of EpSCs in the epidermis. Wound closure rate and re-epithelialization were assayed by a macroscopical view and hematoxylin-eosin (H&E) staining. EpSCs in vitro were co-cultured with DETCs in a transwell-dependent or -independent manner, or supplement with GW4869 or Exos (5 µg/mL, 15 µg/mL and 45 µg/mL), and the proliferation of EpSCs was detected by means of FCAS and CFSE. RESULTS: Our data showed that the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the normal epidermis of Tcrδ-/- mice had no significant difference compared to WT mice. For wounded Tcrδ-/- mice, DETCs treatment increase the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the epidermis around the wound in comparison to PBS treatment. DETCs significantly increased the number of CD49fbriCD7dim cells and K15+ cells through transwell-dependent or -independent manners relative to control group. Furthermore, Exos stimuli remarkedly promote the proliferation of EpSCs compared to control group, while the increasement was suppressed when DETCs were interfered with GW4869. Gross observation and H&E staining showed that Exos significantly accelerated wound closure and increased re-epithelialization length in Tcrδ-/- mice when compared to control mice. Additionally, we found in vivo that Exos observably facilitated the proliferation of CD49fbriCD7dim cells and K15+ cells. CONCLUSIONS: We revealed that DETCs enhanced the proliferation of EpSCs in the epidermis around the wounds to accelerate re-epithelialization in which Exos played important roles in the remote regulation of EpSCs proliferation. Together, these findings suggest a mechanistic link among DETC-derived exosomes, the proliferation of EpSCs, and wound re-epithelialization in the skin.


Assuntos
Exossomos , Reepitelização , Animais , Proliferação de Células , Camundongos , Células-Tronco , Linfócitos T , Cicatrização/fisiologia
14.
Burns Trauma ; 10: tkac027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37469904

RESUMO

Background: P311, a highly conserved 8 kDa intracellular protein, has recently been reported to play an important role in aggravating hypertrophic scaring by promoting the differentiation and secretion of fibroblasts. Nevertheless, how P311 regulates the differentiation and function of fibroblasts to affect granulation tissue formation remains unclear. In this work, we studied the underlying mechanisms via which P311 affects fibroblasts and promotes acute skin wound repair. Methods: To explore the role of P311, both in vitro and in vivo wound-healing models were used. Full-thickness skin excisional wounds were made in wild-type and P311-/- C57 adult mice. Wound healing rate, re-epithelialization, granulation tissue formation and collagen deposition were measured at days 3, 6 and 9 after skin injury. The biological phenotypes of fibroblasts, the expression of target proteins and relevant signaling pathways were examined both in vitro and in vivo. Results: P311 could promote the proliferation and differentiation of fibroblasts, enhance the ability of myofibroblasts to secrete extracellular matrix and promote cell contraction, and then facilitate the formation of granulation tissue and eventually accelerate skin wound closure. Importantly, we discovered that P311 acts via up-regulating the expression of type II transforming growth factor-ß receptor (TGF-ßRII) in fibroblasts and promoting the activation of the TGF-ßRII-Smad signaling pathway. Mechanistically, the mammalian target of rapamycin signaling pathway is closely implicated in the regulation of the TGF-ßRII-Smad pathway in fibroblasts mediated by P311. Conclusions: P311 plays a critical role in activation of the TGF-ßRII-Smad pathway to promote fibroblast proliferation and differentiation as well as granulation tissue formation in the process of skin wound repair.

15.
Front Immunol ; 13: 821932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154140

RESUMO

As a potential clinical therapeutic cell for injured tissue repair, mesenchymal stem cells (MSCs) have attracted increasing attention. Enhancing the pro-healing function of MSCs has gradually become an essential topic in improving the clinical efficacy of MSCs. Recently, studies have shown that neuronal protein 3.1 (P311) plays a crucial role in promoting skin wound healing, suggesting P311 gene modification may improve the pro-healing function of MSCs. In this study, we demonstrated that increasing the in vivo expression of P311 could significantly enhance the ability of MSCs to lessen the number of inflammatory cells, increase the expression of IL10, reduce the levels of TNF-α and IFN-γ, increase collagen deposition, promote angiogenesis, and ultimately accelerate skin wound closure and improve the quality of wound healing. Importantly, we uncovered that P311 enhanced the pro-angiogenesis function of MSCs by increasing the production of vascular endothelial growth factor (VEGF) in vitro and in vivo. Mechanistically, we revealed that the mTOR signalling pathway was closely related to the regulation of P311 on VEGF production in MSCs. Together, our data displayed that P311 gene modification in MSCs augments their capabilities to promote skin wound closure, which might bring the dawn for its clinical application in the future.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pele/patologia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/fisiologia , Indutores da Angiogênese , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética
16.
Sci Bull (Beijing) ; 66(5): 464-477, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654184

RESUMO

Ferroptosis and autophagy, playing significant roles in tumor treatment, are two typical forms of the programmed cell death. However, the rational combination of ferroptosis and autophagy for synergistic tumor therapy is still highly challenging. Herein, we report on an intriguing nanomedicine strategy for achieving autophagy-enhanced ferroptosis on efficiently combating cancer, which was based on the construction of trehalose-loaded mSiO2@MnOx-mPEG (TreMMM) nanoparticles with satisfactory biocompatibility. The nanoparticles are endowed with high glutathione (GSH) consumption efficiency, thereby inducing cancer-cell ferroptosis via inactivating glutathione peroxidases 4 (GPX4). Subsequently, the TreMMM degradation due to the GSH depletion and pH sensitivity contributed to the trehalose release for inducing autophagy, promoting/enhancing ferroptosis by NCOA4-mediated degradation of ferritin. A substantial in vitro and in vivo antitumor effect was achieved by such an intriguing autophagy-enhanced ferroptosis. Therefore, the rational combination of GSH-consumption-induced ferroptosis and trehalose-induced autophagy by nanomedicine design provides an alternative but effective strategy for tumor treatment.

17.
Nat Commun ; 12(1): 3393, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099712

RESUMO

The iron gall ink-triggered chemical corrosion of hand-written documents is a big threat to Western cultural heritages, which was demonstrated to result from the iron gall (GA-Fe) chelate-promoted reactive oxygen species generation. Such a phenomenon has inspired us to apply the pro-oxidative mechanism of GA-Fe to anticancer therapy. In this work, we construct a composite cancer nanomedicine by loading gallate into a Fe-engineered mesoporous silica nanocarrier, which can degrade in acidic tumor to release the doped Fe3+ and the loaded gallate, forming GA-Fe nanocomplex in situ. The nanocomplex with a highly reductive ligand field can promote oxygen reduction reactions generating hydrogen peroxide. Moreover, the resultant two-electron oxidation form of GA-Fe is an excellent Fenton-like agent that can catalyze hydrogen peroxide decomposition into hydroxyl radical, finally triggering severe oxidative damage to tumors. Such a therapeutic approach by intratumoral synthesis of GA-Fe nano-metalchelate may be instructive to future anticancer researches.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Gálico/administração & dosagem , Ferro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Catálise , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Portadores de Fármacos/química , Feminino , Ácido Gálico/química , Ácido Gálico/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Injeções Intravenosas , Ferro/química , Ferro/metabolismo , Ligantes , Nanopartículas Metálicas/química , Camundongos , Neoplasias/patologia , Oxirredução , Oxigênio/metabolismo , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Burns Trauma ; 9: tkab004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212057

RESUMO

BACKGROUND: Delayed wound healing remains a common but challenging problem in patients with acute or chronic wound following accidental scald burn injury. However, the systematic and detailed evaluation of the scald burn injury, including second-degree deep scald (SDDS) and third-degree scald (TDS), is still unclear. The present study aims to analyze the wound-healing speed, the formation of granulation tissue, and the healing quality after cutaneous damage. METHODS: In order to assess SDDS and TDS, the models of SDDS and TDS were established using a scald instrument in C57BL/6 mice. Furthermore, an excisional wound was administered on the dorsal surface in mice (Cut group). The wound-healing rate was first analyzed at days 0, 3, 5, 7, 15 and 27, with the Cut group as a control. Then, on the full-thickness wounds, hematoxylin and eosin (H&E) staining, Masson staining, Sirius red staining, Victoria blue staining and immunohistochemistry were performed to examine re-epithelialization, the formation of granulation tissue, vascularization, inflammatory infiltration and the healing quality at different time points in the Cut, SDDS and TDS groups. RESULTS: The presented data revealed that the wound-healing rate was higher in the Cut group, when compared with the SDDS and TDS groups. H&E staining showed that re-epithelialization, formation of granulation tissue and inflammatory infiltration were greater in the Cut group, when compared with the SDDS and TDS groups. Immunohistochemistry revealed that the number of CD31, vascular endothelial growth factor A, transforming growth factor-ß and α-smooth muscle actin reached preferential peak in the Cut group, when compared with other groups. In addition, Masson staining, Sirius red staining, Victoria blue staining, Gordon-Sweets staining and stress analysis indicated that the ratio of collagen I to III, reticular fibers, failure stress, Young's modulus and failure length in the SDDS group were similar to those in the normal group, suggesting that healing quality was better in the SDDS group, when compared with the Cut and TDS groups. CONCLUSION: Overall, the investigators first administered a comprehensive analysis in the Cut, SDDS and TDS groups through in vivo experiments, which further proved that the obstacle of the formation of granulation tissue leads to delayed wound healing after scald burn injury in mice.

19.
Burns Trauma ; 9: tkab008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514005

RESUMO

BACKGROUND: Epidermal stem cells (EpSCs) that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis. Little is known about the effects of photochemical activation on EpSC differentiation, proliferation and migration during wound healing. The present study aimed to determine the effects of photodynamic therapy (PDT) on wound healing in vivo and in vitro. METHODS: We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid (ALA) for PDT to the wound beds. Wound healing was analysed by gross evaluation and haematoxylin-eosin staining in vivo. In cultured EpSCs, protein expression was measured using flow cytometry and immunohistochemistry. Cell migration was examined using a scratch model; apoptosis and differentiation were measured using flow cytometry. RESULTS: PDT accelerated wound closure by enhancing EpSC differentiation, proliferation and migration, thereby promoting re-epithelialization and angiogenesis. PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines, whereas the secretion of growth factors was greater than in other groups. The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups. EpSC migration was markedly enhanced after ALA-induced PDT. CONCLUSIONS: Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization, promoting angiogenesis as well as modulating skin homeostasis. This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing.

20.
Stem Cell Res Ther ; 11(1): 220, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513275

RESUMO

BACKGROUND: Restenosis is a serious problem in patients who have undergone percutaneous transluminal angioplasty. Endothelial injury resulting from surgery can lead to endothelial dysfunction and neointimal formation by inducing aberrant proliferation and migration of vascular smooth muscle cells. Exosomes secreted by mesenchymal stem cells have been a hot topic in cardioprotective research. However, to date, exosomes derived from mesenchymal stem cells (MSC-Exo) have rarely been reported in association with restenosis after artery injury. The aim of this study was to investigate whether MSC-Exo inhibit neointimal hyperplasia in a rat model of carotid artery balloon-induced injury and, if so, to explore the underlying mechanisms. METHODS: Characterization of MSC-Exo immunophenotypes was performed by electron microscopy, nanoparticle tracking analysis and western blot assays. To investigate whether MSC-Exo inhibited neointimal hyperplasia, rats were intravenously injected with normal saline or MSC-Exo after carotid artery balloon-induced injury. Haematoxylin-eosin staining was performed to examine the intimal and media areas. Evans blue dye staining was performed to examine re-endothelialization. Moreover, immunohistochemistry and immunofluorescence were performed to examine the expression of CD31, vWF and α-SMA. To further investigate the involvement of MSC-Exo-induced re-endothelialization, the underlying mechanisms were studied by cell counting kit-8, cell scratch, immunofluorescence and western blot assays. RESULTS: Our data showed that MSC-Exo were ingested by endothelial cells and that systemic injection of MSC-Exo suppressed neointimal hyperplasia after artery injury. The Evans blue staining results showed that MSC-Exo could accelerate re-endothelialization compared to the saline group. The immunofluorescence and immunohistochemistry results showed that MSC-Exo upregulated the expression of CD31 and vWF but downregulated the expression of α-SMA. Furthermore, MSC-Exo mechanistically facilitated proliferation and migration by activating the Erk1/2 signalling pathway. The western blot results showed that MSC-Exo upregulated the expression of PCNA, Cyclin D1, Vimentin, MMP2 and MMP9 compared to that in the control group. Interestingly, an Erk1/2 inhibitor reversed the expression of the above proteins. CONCLUSION: Our data suggest that MSC-Exo can inhibit neointimal hyperplasia after carotid artery injury by accelerating re-endothelialization, which is accompanied by activation of the Erk1/2 signalling pathway. Importantly, our study provides a novel cell-free approach for the treatment of restenosis diseases after intervention.


Assuntos
Lesões das Artérias Carótidas , Exossomos , Células-Tronco Mesenquimais , Animais , Proliferação de Células , Células Endoteliais , Humanos , Hiperplasia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA