Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 192, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316835

RESUMO

In the treatment of spinal cord injury (SCI), the complex process of secondary injury is mainly responsible for preventing SCI repair or even exacerbating the injury. In this experiment, we constructed the 8-gingerol (8G)-loaded mesoporous polydopamine (M-PDA), M@8G, as the in vivo targeting nano-delivery platform, and investigated the therapeutic effects of M@8G in secondary SCI and its related mechanisms. The results indicated that M@8G could penetrate the blood-spinal cord barrier to enrich the spinal cord injury site. Mechanism research has shown that all of the M-PDA,8G and M@8G displayed the anti-lipid peroxidation effect, and then M@8G can inhibit the secondary SCI by suppressing the ferroptosis and inflammation. In vivo assays showed that M@8G significantly diminished the local injury area, reduced axonal and myelin loss, thus improving the neurological and motor recovery in rats. Based on the analysis of cerebrospinal fluid samples from patients, ferroptosis occurred locally in SCI and continued to progress in patients during the acute phase of SCI as well as the stage after their clinical surgery. This study showcases effective treatment of SCI through the aggregation and synergistic effect of M@8G in focal areas, providing a safe and promising strategy for the clinical treatment of SCI.


Assuntos
Traumatismos da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Catecóis/farmacologia , Álcoois Graxos/farmacologia
2.
Front Bioeng Biotechnol ; 10: 997877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312530

RESUMO

Objective: To evaluate the biological function of cervical subtotal discectomy prosthesis (CSDP) implantation in a non-human primate model. Methods: A CSDP was tested for cytocompatibility and osseointegration capacity before implantation in non-human primates. Subsequently, the CSDP was improved based on three-dimensional CT measurements of the non-human primate cervical spine. Eight cynomolgus monkeys were selected for removal of the intervertebral disc and lower endplate of the C5/6 segment to complete the model construction for CSDP implantation. In 18-month follow-up, physiological indices, radiology, and kinematics were assessed to estimate the biological function of the CSDP in non-human primates, including biosafety, osseointegration, and biomechanics. Results: Co-cultured with the CSDP constituent titanium alloy (Ti6Al4V-AO), the mouse embryo osteoblast precursor cell MC3T3-E1 obtained extended adhesion, remarkable viability status, and cell proliferation. After implantation in the mouse femur for 28 days, the surface of Ti6Al4V-AO was covered by a large amount of new cancellous bone, which formed further connections with the femur cortical bone, and no toxicity was detected by blood physiology indices or histopathology. After completing implantation in primate models, no infection or osteolysis was observed, nor was any subsidence or displacement of the CSDP observed in CT scans in the 18-month follow-up. In particular, the interior of the cervical vertebra fixation structure was gradually filled with new trabecular bone, and the CSDP had achieved fixation and bony fusion in the vertebral body at 1 year post-operation. Meanwhile, no signs of inflammation, spinal cord compression, adjacent segment degeneration, or force line changes were observed in subsequent MRI observations. Moreover, there were no pathological changes of the joint trajectory, joint motion range, stride length, or the stance phase ratio revealed in the kinematics analysis at 3, 6, 12, or 18 months after CSDP implantation. Conclusion: We successfully designed a new cervical subtotal discectomy prosthesis and constructed an excellent non-human primate implantation model for the evaluation of subtotal disc replacement arthroplasty. Furthermore, we demonstrated that CSDP had outstanding safety, osseointegration capacity, and biomechanical stability in a non-human primate model, which might be a new choice in the treatment of cervical disc diseases and potentially change future outcomes of degenerative cervical diseases.

3.
J Int Med Res ; 48(6): 300060520929585, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32527182

RESUMO

OBJECTIVE: This study was performed to examine the clinical outcomes of epidural and intradural decompression for degenerative cervical myelopathy. METHODS: The data for 13 patients who underwent epidural and intradural decompression for treatment of degenerative cervical myelopathy (study group) and 20 patients who underwent only cervical laminoplasty, fusion, and epidural decompression (historical control group) were retrospectively reviewed. The preoperative and postoperative neurological status was evaluated using the Japanese Orthopaedic Association (JOA) score. RESULTS: All patients' neurological symptoms were significantly improved at the final follow-up. In the study group, the patients' mean preoperative JOA score was 8.07 ± 1.80, and the final score improved by 70.88% ± 21.18%. The blood loss and operation time were significantly greater in the study group than control group. The recovery time was shorter in the study group than control group. The improvement rate was not significantly different between the two groups. CONCLUSIONS: A pia mater incision with separation of the arachnoid adhesion can significantly improve the cerebrospinal fluid flow and spinal blood flow in degenerative cervical myelopathy. Arachnoid adhesion can lead to intradural spinal scar compression. The surgical intervention described herein can achieve satisfactory neurological outcomes and shorten the recovery time.


Assuntos
Vértebras Cervicais/cirurgia , Descompressão Cirúrgica/métodos , Laminoplastia , Doenças da Medula Espinal/cirurgia , Fusão Vertebral , Adulto , Idoso , Aracnoide-Máter/cirurgia , Terapia Combinada/métodos , Espaço Epidural/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pia-Máter/cirurgia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(9): 1340-1345, 2020 Sep 30.
Artigo em Zh | MEDLINE | ID: mdl-32990222

RESUMO

OBJECTIVE: To evaluate the capacity and efficiency of human umbilical cord mesenchymal stem cells (HUCMSCs) to differentiate into neuron- like cells after induction with B27- supplemented serum- free medium. METHODS: HUCMSCs at passage 4 were cultured for 14 days with serum-containing medium (SCM) (group A), SCM supplemented with 20 ng/mL nerve growth factor (NGF) and 10 ng/mL basic fibroblast growth factor (bFGF) (group B), serum-free medium (SFM) (group C), or SFM supplemented with 20 ng/mL NGF and 10 ng/mL bFGF. The culture medium were changed every 3 days and the growth of the neurospheres was observed using an inverted microscope. The cell markers were analyzed with flow cytometry and the expressions of nestin, neuron- specific enolase (NSE), neurofilament heavy polypeptide (NEFH), and glial fibrillary acidic protein (GFAP) were quantified by quantitative real-time PCR (qRT-PCR) and Western blotting. RESULTS: Before induction, HUCMSCs expressed abundant mesenchymal stem cell surface markers including CD29 (99.5%), CD44 (49.6%) and CD105 (77.7%). Neuron-like cells were observed in the cultures on days 7, 10, and 14, and the cell differentiation was the best in group D, followed by groups C, B and A. In all the 4 groups, the cellular expressions of nestin and GFAP gradually lowered while those of NEFH and NSE increased progressively. The expressions of GFAP, NEFH, nestin and NSE were significantly different between group A and the other 3 groups (P < 0.001 or 0.05). CONCLUSIONS: B27-supplemented SFM effectively induces the differentiation of HUCMSCs into neuron- like cells, and the supplementation with cytokines (NGF and bFGF) strongly promotes the cell differentiation.


Assuntos
Células-Tronco Mesenquimais , Células Cultivadas , Suplementos Nutricionais , Humanos , Neurônios , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA