Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6788-6796, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781093

RESUMO

Currently, the improvement in the processing capacity of traditional processors considerably lags behind the demands of real-time image processing caused by the advancement of photodetectors and the widespread deployment of high-definition image sensors. Therefore, achieving real-time image processing at the sensor level has become a prominent research domain in the field of photodetector technology. This goal underscores the need for photodetectors with enhanced multifunctional integration capabilities than can perform real-time computations using optical or electrical signals. In this study, we employ an innovative p-type semiconductor GaTe0.5Se0.5 to construct a polarization-sensitive wide-spectral photodetector. Leveraging the wide-spectral photoresponse, we realize three-band imaging within a wavelength range of 390-810 nm. Furthermore, real-time image convolutional processing is enabled by configuring appropriate convolution kernels based on the polarization-sensitive photocurrents. The innovative design of the polarization-sensitive wide-spectral GaTe0.5Se0.5-based photodetector represents a notable contribution to the domain of real-time image perception and processing.

2.
Small ; 19(35): e2301362, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37170715

RESUMO

Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity. It is also revealed that the differences in surface wettability and adhesion play the key role. Consequently, a flat pattern with thermodynamically favorable ordered structure and a sharp pattern with dynamically favorable disordered structure are achieved, which show different solid-state photoisomerization behaviors and photoresponsiveness. Interestingly, conductivity of sharp pattern with disordered structure is higher than that of flat pattern with layered ordered structure due to electronic transport mechanism of different spatial dimensions. This work opens a new way for manipulating the molecular self-assembly to control the morphology and function of molecular patterns.

3.
Small ; 17(21): e2100457, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33890405

RESUMO

Birefringence and dichroism are very important properties in optical anisotropy. Understanding the intrinsic birefringence and dichroism of a material can provide great help to utilize its optical anisotropy. But the direct experimental investigation of birefringence in nanoscale materials is rarely reported. As typical anisotropic transition metals trichalcogenides (TMTCs) materials with quasi-1D structure, TiS3 and ZrS3 have attracted extensive attention due to their special crystal structure and optical anisotropy characteristics. Here, the optical anisotropy properties such as birefringence and dichroism of two kinds of quasi-1D TMTCs, TiS3 and ZrS3 , are theoretically and experimentally studied. In experimental results, the anisotropic refraction and anisotropic reflection of TiS3 and ZrS3 are studied by polarization-resolved optical microscopy and azimuth-dependent reflectance difference microscopy, respectively. In addition, the birefringence and dichroism of ZrS3 nanoribbon in experiment are directly measured by spectrometric ellipsometry measurements, and a reasonable result is obtained. This work provides the basic optical anisotropy information of TiS3 and ZrS3 . It lays a foundation for the further study of the optical anisotropy of these two materials and provides a feasible method for the study of birefringence and dichroism of other nanomaterials in the future.

4.
Small ; 15(38): e1902801, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31373177

RESUMO

The development of noncontact humidity sensors with high sensitivity, rapid response, and a facile fabrication process is urgently desired for advanced noncontact human-machine interaction (HMI) applications. Here, a flexible and transparent humidity sensor based on MoO3 nanosheets is developed with a low-cost and easily manufactured process. The designed humidity sensor exhibits ultrahigh sensitivity, fast response, great stability, and high selectivity, exceeding the state-of-the-art humidity sensors. Furthermore, a wearable moisture analysis system is assembled for real-time monitoring of ambient humidity and human breathing states. Benefiting from the sensitive and rapid response to fingertip humidity, the sensors are successfully applied to both a smart noncontact multistage switch and a novel flexible transparent noncontact screen for smart mobile devices, demonstrating the potential of the MoO3 nanosheets-based humidity sensors in future HMI systems.

5.
Small ; 11(40): 5430-8, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26296851

RESUMO

Van der Waals (vdW) p-n heterojunctions consisting of various 2D layer compounds are fascinating new artificial materials that can possess novel physics and functionalities enabling the next-generation of electronics and optoelectronics devices. Here, it is reported that the WSe2/WS2 p-n heterojunctions perform novel electrical transport properties such as distinct rectifying, ambipolar, and hysteresis characteristics. Intriguingly, the novel tunable polarity transition along a route of n-"anti-bipolar"-p-ambipolar is observed in the WSe2/WS2 heterojunctions owing to the successive work of conducting channels of junctions, p-WSe2 and n-WS2 on the electrical transport of the whole systems. The type-II band alignment obtained from first principle calculations and built-in potential in this vdW heterojunction can also facilitate the efficient electron-hole separation, thus enabling the significant photovoltaic effect and a much enhanced self-driven photoswitching response in this system.

6.
Chemphyschem ; 16(1): 99-103, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25294685

RESUMO

High-quality Bi2 S3 nanowires are synthesized by chemical vapor deposition and their intrinsic photoresponsive and field-effect characteristics are explored in detail. Among the studied Au-Au, Ag-Ag, and Au-Ag electrode pairs, the device with stepwise band alignment of asymmetric Au-Ag electrodes has the highest mobility. Furthermore, it is shown that light can cause a sevenfold decrease of the on/off ratio. This can be explained by the photoexcited charge carriers that are more beneficial to the increase of Ioff than Ion . The photoresponsive properties of the asymmetric Au-Ag electrode devices were also explored, and the results show a photoconductive gain of seven with a rise time of 2.9 s and a decay time of 1.6 s.

7.
Chemphyschem ; 15(12): 2510-6, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25099253

RESUMO

Bi2S3 single-crystalline nanowires are synthesized through a hydrothermal method and then fabricated into single nanowire photodetectors. Due to the different contact barrier between the gold electrode and Bi2S3 nanowires, two kinds of devices with different electrical contacts are obtained and their photoresponsive properties are investigated. The non-ohmic contact devices show larger photocurrent gains and shorter response times than those of ohmic contact devices. Furthermore, the influence of a focused laser on the barrier height between gold and Bi2S3 is explored in both kinds of devices and shows that laser illumination on the Au-Bi2S3 interface can greatly affect the barrier height in non-ohmic contact devices, while keeping it intact in ohmic contact devices. A model based on the surface photovoltage effect is used to explain this phenomenon.

8.
Adv Mater ; 36(3): e2307769, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37696251

RESUMO

Polarization imaging presents advantages in capturing spatial, spectral, and polarization information across various spectral bands. It can improve the perceptual ability of image sensors and has garnered more applications. Despite its potential, challenges persist in identifying band information and implementing image enhancement using polarization imaging. These challenges often necessitate integrating spectrometers or other components, resulting in increased complexities within image processing systems and hindering device miniaturization trends. Here, the characteristics of anisotropic absorption reversal are systematically elucidated in pucker-like group IV-VI semiconductors MX (M = Ge, Sn; X = S, Se) through theoretical predictions and experimental validations. Additionally, the fundamental mechanisms behind anisotropy reversal in different bands are also explored. The photodetector is constructed by utilizing MX as a light-absorbing layer, harnessing polarization-sensitive photoresponse for virtual imaging. The results indicate that the utilization of polarization reversal photodetectors holds advantages in achieving further multifunctional integration within the device structure while simplifying its configuration, including band information identification and image enhancement. This study provides a comprehensive analysis of polarization reversal mechanisms and presents a promising and reliable approach for achieving dual-band image band identification and image enhancement without additional auxiliary components.

9.
Adv Mater ; 36(6): e2309371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769436

RESUMO

Polarimetric photodetector can acquire higher resolution and more surface information of imaging targets in complex environments due to the identification of light polarization. To date, the existing technologies yet sustain the poor polarization sensitivity (<10), far from market application requirement. Here, the photovoltaic detectors with polarization- and gate-tunable optoelectronic reverse phenomenon are developed based on semimetal 1T'-MoTe2 and ambipolar WSe2 . The device exhibits gate-tunable reverse in rectifying and photovoltaic characters due to the directional inversion of energy band, yielding a wide range of current rectification ratio from 10-2 to 103 and a clear object imaging with 100 × 100 pixels. Acting as a polarimetric photodetector, the polarization ratio (PR) value can reach a steady state value of ≈30, which is compelling among the state-of-the-art 2D-based polarized detectors. The sign reversal of polarization-sensitive photocurrent by varying the light polarization angles is also observed, that can enable the PR value with a potential to cover possible numbers (1→+∞/-∞→-1). This work develops a photovoltaic detector with polarization- and gate-tunable optoelectronic reverse phenomenon, making a significant progress in polarimetric imaging and multifunction integration applications.

10.
Adv Sci (Weinh) ; 11(24): e2309781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38610112

RESUMO

Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology.

11.
Chemphyschem ; 14(18): 4069-73, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24227745

RESUMO

Sun trap: Pure WS2 nanosheets are prepared that exhibit excellent photosensitive properties. After functionalization with WO3 nanoparticles, abnormal photocurrent responses, enhanced photocatalytic activity, and induced photoluminescence is observed.

12.
Sci Bull (Beijing) ; 68(2): 173-179, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36653218

RESUMO

Polarization-sensitive photodetectors, with the ability of identifying the texture-, stress-, and roughness-induced light polarization state variation, displace unique advantages in the fields of national security, medical diagnosis, and aerospace. The utilization of in-plane anisotropic two-dimensional (2D) materials has led the polarization photodetector into a polarizer-free regime, and facilitated the miniaturization of optoelectronic device integration. However, the insufficient polarization ratio (usually less than 10) restricts the detection resolution of polarized signals. Here, we designed a sub-wavelength array (SWA) structure of 2D germanium selenium (GeSe) to further improve its anisotropic sensitivity, which boosts the polarized photocurrent ratio from 1.6 to 18. This enhancement comes from the combination of nano-scale arrays with atomic-scale lattice arrangement at the low-symmetric direction, while the polarization-sensitive photoresponse along the high-symmetric direction is strongly suppressed due to the SWA-caused depolarization effect. Our mechanism study revealed that the SWA can improve the asymmetry of charge distribution, attenuate the matrix element in zigzag direction, and the localized surface plasma, which elevates the photo absorption and photoelectric transition probability along the armchair direction, therefore accounts for the enhanced polarization sensitivity. In addition, the photodetector based on GeSe SWA exhibited a broad power range of 40 dB at a near-infrared wavelength of 808 nm and the ability of weak-light detection under 0.1 LUX of white light (two orders of magnitude smaller than pristine 2D GeSe). This work provides a feasible guideline to improve the polarization sensitivity of 2D materials, and will greatly benefit the development of polarized imaging sensors.

13.
Small Methods ; 6(4): e2101348, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35277948

RESUMO

2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.

14.
Adv Mater ; 34(2): e2107206, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676919

RESUMO

2D materials have been attracting high interest in recent years due to their low structural symmetry, excellent photoresponse, and high air stability. However, most 2D materials can only respond to specific light, which limits the development of wide-spectrum photodetectors. Proper bandgap and the regulation of Fermi level are the foundations for realizing electronic multichannel transition, which is an effective method to achieve a wide spectral response. Herein, a noble 2D material, palladium phosphide sulfide (PdPS), is designed and synthesized. The bandgap of PdPS is around 2.1 eV and the formation of S vacancies, interstitial Pd and P atoms promote the Fermi level very close to the conduction band. Therefore, the PdPS-based photodetector shows impressive wide spectral response from solar-blind ultraviolet to near-infrared based on the multichannel transition. It also exhibits superior optoelectrical properties with photoresponsivity (R) of 1 × 103 A W-1 and detectivity (D*) of 4 × 1011 Jones at 532 nm. Moreover, PdPS exhibits good performance of polarization detection with dichroic ratio of ≈3.7 at 808 nm. Significantly, it achieves polarimetric imaging and hidden-target detection in complex environments through active detection.

15.
Fundam Res ; 2(6): 985-992, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933380

RESUMO

Tin selenide (SnSe) has attracted considerable interest recently on account of its low-symmetry lattice structure, great compatibility with key semiconductor technology, and remarkable electrical and optical performance. SnSe-based polarization-sensitive photodetectors show promising application prospects because of their fast response and excellent photoelectric performance. Here, an in-plane anisotropic SnSe nanosheet was synthesized and reported in detail by applying angle-resolved polarized Raman spectroscopy (ARPRS), polarization-resolved optical microscopy(PROM), angle-resolved optical absorption spectroscopy (AROAS), and other crystal structure characterization methods. Moreover, SnSe crystals exhibit superior polarization detection performance with a high anisotropic photocurrent ratio (2.31 at 1064 nm) due to the structure formed by the Van der Waals superposition of covalently bonded atomic layers. Furthermore, SnSe-based photodetectors have high responsivity (9.27 A/W), high detectivity (4.08 × 1010 Jones), and fast response (in the order of nanoseconds). These results suggest a new method for fabricating 2D fast-response polarization-sensitive photodetectors in the future.

16.
Adv Mater ; 34(43): e2206486, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36047665

RESUMO

The intentionally designed band alignment of heterostructures and doping engineering are keys to implement device structure design and device performance optimization. According to the theoretical prediction of several typical materials among the transition metal dichalcogenides (TMDs) and group-IV metal chalcogenides, MoS2 and SnSe2 present the largest staggered band offset. The large band offset is conducive to the separation of photogenerated carriers, thus MoS2 /SnSe2 is a theoretically ideal candidate for fabricating photodetector, which is also verified in the experiment. Furthermore, in order to extend the photoresponse spectrum to solar-blind ultraviolet (SBUV), doping engineering is adopted to form an additional electron state, which provides an extra carrier transition channel. In this work, pure MoS2 /SnSe2 and doped MoS2 /SnSe2 heterostructures are both fabricated. In terms of the photoelectric performance evaluation, the rejection ratio R254 /R532 of the photodetector based on doped MoS2 /SnSe2 is five orders of magnitude higher than that of pure MoS2 /SnSe2 , while the response time is obviously optimized by 3 orders. The results demonstrate that the combination of band alignment and doping engineering provides a new pathway for constructing SBUV photodetectors.

17.
Adv Mater ; 33(8): e2006908, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448082

RESUMO

The interfacial tunable band alignment of heterostructures is coveted in device design and optimization of device performance. As an intentional approach, alloying allows band engineering and continuous band-edge tunability for low-dimensional semiconductors. Thus, combining the tunability of alloying with the band structure of a heterostructure is highly desirable for the improvement of device characteristics. In this work, the single-step growth of alloy-to-alloy (MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y ) 2D vertical heterostructures is demonstrated. Electron diffraction reveals the well-aligned heteroepitaxial relationship for the heterostructure, and a near-atomically sharp and defect-free boundary along the interface is observed. The nearly intrinsic van der Waals (vdW) interface enables measurement of the intrinsic behaviors of the heterostructures. The optimized type-II band alignment for the MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y heterostructure, along with the large band offset and effective charge transfer, is confirmed through quenched PL spectroscopy combined with density functional theory calculations. Devices based on completely stacked heterostructures show one or two orders enhanced electron mobility and rectification ratio than those of the constituent materials. The realization of device-quality alloy-to-alloy heterostructures provides a new material platform for precisely tuning band alignment and optimizing device applications.

18.
Adv Mater ; 33(22): e2008761, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33876467

RESUMO

Exploring 2D ultrawide bandgap semiconductors (UWBSs) will be conductive to the development of next-generation nanodevices, such as deep-ultraviolet photodetectors, single-photon emitters, and high-power flexible electronic devices. However, a gap still remains between the theoretical prediction of novel 2D UWBSs and the experimental realization of the corresponding materials. The cross-substitution process is an effective way to construct novel semiconductors with the favorable parent characteristics (e.g., structure) and the better physicochemical properties (e.g., bandgap). Herein, a simple case is offered for rational design and syntheses of 2D UWBS GaPS4 by employing state-of-the-art GeS2 as a similar structural model. Benefiting from the cosubstitution of Ge with lighter Ga and P, the GaPS4 crystals exhibit sharply enlarged optical bandgaps (few-layer: 3.94 eV and monolayer: 4.50 eV) and superior detection performances with high responsivity (4.89 A W-1 ), high detectivity (1.98 × 1012 Jones), and high quantum efficiency (2.39 × 103 %) in the solar-blind ultraviolet region. Moreover, the GaPS4 -based photodetector exhibits polarization-sensitive photoresponse with a linear dichroic ratio of 1.85 at 254 nm, benefitting from its in-plane structural anisotropy. These results provide a pathway for the discovery and fabrication of 2D UWBS anisotropic materials, which become promising candidates for future solar-blind ultraviolet and polarization-sensitive sensors.

19.
Nanoscale ; 13(23): 10579-10586, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34100510

RESUMO

As a new two-dimensional elemental layered semiconductor, black phosphorus (b-P) has received tremendous attention due to its excellent physical and chemical properties and has potential applications in the fields of catalysis, energy, and micro/nano-optoelectronic devices. However, studies have found that b-P is very unstable and will decompose within a few minutes under humid air conditions. Element doping is an effective method for adjusting the physical and chemical properties of crystals. Theoretical and experimental studies have confirmed that the stability of b-P crystals is significantly improved after arsenic doping, and the crystals also exhibit excellent photoresponse and electrical transport performances. In this work, we investigate the physical properties of a component of black arsenic phosphorus crystals (b-As0.084P0.916) and the potential applications in field effect transistors (FETs) and broadband photodetectors. An obvious ambipolar behavior is observed in the transfer characteristics of b-As0.084P0.916 based FETs, with drain current modulation on the order of 105 and the highest charge-carrier mobility of up to 147 cm2 V-1 s-1. The physisorption of atmospheric species on the surface of the FETs is the main factor for the formation of Schottky contacts between the Au electrodes and the b-As0.084P0.916 crystal. Temperature-dependent electrical characteristics show that the Fermi level shifts from the valence band to the middle level between the conduction band and valence band as the temperature decreases. In addition, the FETs also exhibit excellent photoresponse properties from the visible to near-infrared region (450-2200 nm), with a responsivity of 37 A W-1, a specific detectivity of 7.18 × 1010 Jones, and a fast response speed (τrise ≈ 0.04 s and τdecay ≈ 0.14 s). These results suggest that b-As0.084P0.916 crystals are a promising candidate for future electronic and optoelectronic devices.

20.
Nanoscale ; 13(38): 16122-16130, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34533169

RESUMO

Two-dimensional ferroelectric semiconductors (2DFeSs) have been attracting extensive research attention on account of their unique properties and versatile applications in random-access memory, digital signal processors, and neuromorphic computing. Germanium sulfide (GeS) is predicted as a typical 2DFeS with a large spontaneous polarization of 484 pC m-1. Furthermore, the moderate band gap equivalent to 1.63 eV of GeS provides it with significant potential to create a strong bulk photovoltage in the visible light range. However, the fabrication of chemically stable few-to-monolayer GeS has not been reported so far, owing to the strong interlayer force and high chemical reactivity of the surface. Herein we demonstrate a new method for fabricating high quality, air-stable, ultrathin GeS nanoflakes. The electrical characterization confirms the formation of few-layered GeS with a remarkable in-plane ferroelectric hysteresis, which is forbidden by the inversion symmetry in bulk GeS crystals. After applying a coercive field of about 18.1 kV cm-1, a switchable shift current can also be observed in the polarized GeS nanoflakes under light irradiation. To further enhance the photoresponsivity, few-layered InSe was transferred onto the GeS nanoflakes to form van der Waals ferroelectric diodes. The interfacial perturbation breaking the inversion symmetry results in the enhancement of robust dipoles in the GeS side along the interface, which can be tuned by the in-plane electric field. Overall, this work opens the door for exploring the low-dimensional ferroelectric memory and energy conversion applications based on 2D GeS nanoflakes and provides a deeper understanding of the photovoltaic mechanism with in-plane 2D ferroelectric diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA