Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2201279119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215475

RESUMO

Broken time-reversal and parity symmetries in active spinner fluids imply a nondissipative "odd viscosity," engendering phenomena unattainable in traditional passive or active fluids. Here we show that the odd viscosity itself can lead to a Hall-like transport when the active chiral fluid flows through a quenched matrix of obstacles, reminiscent of the anomalous Hall effect. The Hall-like velocity depends significantly on the spinner activity and longitudinal flow due to the interplay between odd viscosity and spinner-obstacle collisions. Our findings underscore the importance of odd viscosity in active chiral matter and elucidate its essential role in the anomalous Hall-like effect.

2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654746

RESUMO

In nature, microorganisms could sense the intensity of the incident visible light and exhibit bidirectional (positive or negative) phototaxis. However, it is still challenging to achieve the similar biomimetic phototaxis for the artificial micro/nanomotor (MNM) counterparts with the size from a few nanometers to a few micrometers. In this work, we report a fuel-free carbon nitride (C3N4)/polypyrrole nanoparticle (PPyNP)-based smart MNM operating in water, whose behavior resembles that of the phototactic microorganism. The MNM moves toward the visible light source under low illumination and away from it under high irradiation, which relies on the competitive interplay between the light-induced self-diffusiophoresis and self-thermophoresis mechanisms concurrently integrated into the MNM. Interestingly, the competition between these two mechanisms leads to a collective bidirectional phototaxis of an ensemble of MNMs under uniform illuminations and a spinning schooling behavior under a nonuniform light, both of which can be finely controllable by visible light energy. Our results provide important insights into the design of the artificial counterpart of the phototactic microorganism with sophisticated motion behaviors for diverse applications.


Assuntos
Luz , Movimento (Física) , Fototaxia , Biomimética , Polímeros/metabolismo , Pirróis/metabolismo
3.
Nano Lett ; 23(11): 5148-5154, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253157

RESUMO

Three-dimensional (3D) characterization of organisms is important for the study of cellular phenotypes, structural organization, and mechanotransduction. Existing optical techniques for 3D imaging rely on focus stacking or complex multiangle projection. Focus stacking has deleterious axial resolution due to the one-angle optical projection. Herein, we achieve high-resolution 3D imaging and classification of organisms based on standard optical microscopy coupled to optothermal rotation. Through a seamless fusion of optical trapping and rotation of organisms on a single platform, our technique is applicable to any organism suspended in clinical samples, enabling contact-free and biocompatible 3D imaging. Moreover, when applying deep learning to distinguish different types of biological cells with high similarity, we demonstrate that our platform improves the classification accuracy (96% vs 85%) while using one-tenth the number of training samples compared with conventional deep-learning-based classification.


Assuntos
Imageamento Tridimensional , Microscopia , Imageamento Tridimensional/métodos , Mecanotransdução Celular , Pinças Ópticas
4.
Phys Rev Lett ; 131(12): 128201, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802956

RESUMO

We construct structural order parameters based on local angular and radial distribution functions in dense colloidal suspensions. All the order parameters show significant correlations to local dynamics in the supercooled and glass regime. In particular, the correlations between the orientational order and dynamical heterogeneity are consistently higher than those between the conventional two-body structural entropy and local dynamics. The structure-dynamics correlations can be explained by a excitation model with the energy barrier depending on local structural order. Our results suggest that in dense disordered packings, local orientational order is higher than translational order, and plays a more important role in determining the dynamics in glassy systems.

5.
Phys Rev Lett ; 131(15): 158301, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897752

RESUMO

We perform optical-tweezers experiments and mesoscale fluid simulations to study the effective interactions between two parallel plates immersed in bacterial suspensions. The plates are found to experience a long-range attraction, which increases linearly with bacterial density and decreases with plate separation. The higher bacterial density and orientation order between plates observed in the experiments imply that the long-range effective attraction mainly arises from the bacterial flow field, instead of the direct bacterium-plate collisions, which is confirmed by the simulations. Furthermore, the hydrodynamic contribution is inversely proportional to the squared interplate separation in the far field. Our findings highlight the importance of hydrodynamics on the effective forces between passive objects in active baths, providing new possibilities to control activity-directed assembly.


Assuntos
Bactérias , Hidrodinâmica , Suspensões
6.
Soft Matter ; 19(48): 9505-9510, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38044703

RESUMO

The organization of microscopic objects into specific structures with movable parts is a prerequisite for building sophisticated micromachines with complex functions, as exemplified by their macroscopic counterparts. Here we report the self-assembly of active and passive colloids into micromachinery with passive rotational parts. Depending on the attachment of the active colloid to a substrate, which varies the degrees of free freedom of the assembly, colloidal machines with rich internal rotational dynamics are realized. Energetic analysis reveals that the energy efficiency increases with the degrees of freedom of the machine. The experimental results can be rationalized by the cooperation of phoretic interaction and osmotic flow encoded in the shape of the active colloid, which site-specifically binds and exerts a torque to passive colloids, supported by finite element calculations and mesoscale simulations. Our work offers a new design principle that utilizes nonequilibrium interfacial phenomena for spontaneous construction of multiple-component reconfigurable micromachinery.

7.
Proc Natl Acad Sci U S A ; 117(22): 11901-11907, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430333

RESUMO

Due to its inherent out-of-equilibrium nature, active matter in confinement may exhibit collective behavior absent in unconfined systems. Extensive studies have indicated that hydrodynamic or steric interactions between active particles and boundary play an important role in the emergence of collective behavior. However, besides introducing external couplings at the single-particle level, the confinement also induces an inhomogeneous density distribution due to particle-position correlations, whose effect on collective behavior remains unclear. Here, we investigate this effect in a minimal chiral active matter composed of self-spinning rotors through simulation, experiment, and theory. We find that the density inhomogeneity leads to a position-dependent frictional stress that results from interrotor friction and couples the spin to the translation of the particles, which can then drive a striking spatially oscillating collective motion of the chiral active matter along the confinement boundary. Moreover, depending on the oscillation properties, the collective behavior has three different modes as the packing fraction varies. The structural origins of the transitions between the different modes are well identified by the percolation of solid-like regions or the occurrence of defect-induced particle rearrangement. Our results thus show that the confinement-induced inhomogeneity, dynamic structure, and compressibility have significant influences on collective behavior of active matter and should be properly taken into account.

8.
Phys Rev Lett ; 129(1): 018002, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841542

RESUMO

We perform experiments and computer simulations to study the effective interactions between like-charged colloidal tracers moving in a two-dimensional fluctuating background of colloidal crystal. By a counting method that properly accounts for the configurational degeneracy of tracer pairs, we extract the relative probability of finding a tracer pair in neighboring triangular cells formed by background particles. We find that this probability at the nearest neighbor cell is remarkably greater than those at cells with larger separations, implying an effective attraction between the tracers. This effective attraction weakens sharply as the background lattice constant increases. Furthermore, we clarify that the lattice-mediated effective attraction originates from the minimization of free energy increase from deformation of the crystalline background due to the presence of diffusing tracers.


Assuntos
Coloides , Coloides/química , Simulação por Computador , Difusão , Íons
9.
Chemistry ; 28(67): e202202319, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36004450

RESUMO

Chemotaxis plays a crucial role in the realization of various functions of human life such as fertilization, immune function, inflammatory response, regeneration processes, etc. Inspired by the natural chemotaxis, colloidal motors with chemotactic ability can realize intelligent sense and targeted navigation, which bring a revolutionary method to biomedical applications like precision medicine. However, the application in the biomedical field requires the colloidal motors with submicrometer scale, strong chemotactic ability and clear chemotactic mechanism. In this Concept article, we introduce the recent progress of chemotactic colloidal motors, covering the fundamental theory behind experimental advancements. Particularly, the torque-driven reorientation motion of the submicrometer-sized colloidal motors during chemotaxis is discussed, and also their underlying mechanism is proposed. With the continuous research on chemotactic colloidal motors, it is believed that the emerging chemotactic colloidal motors will broaden practical applications in the biomedical field.


Assuntos
Quimiotaxia , Humanos , Quimiotaxia/fisiologia , Movimento (Física)
10.
Langmuir ; 38(13): 3993-4000, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333054

RESUMO

Droplets impacting onto a solid or liquid surface inducing wetting, floatation, splash, coalescence, etc. is ubiquitous in nature and industrial processes. Here, we report that liquid droplets exhibit spherical caps upon contact with a fully miscible liquid film of lower surface tension, despite the spontaneous mixing of the two liquids. Such a spherical cap on a continuous liquid surface sustains a long lifespan up to minutes before ultimately merging into the film. Benefiting from large viscous forces in a thin film as a result of spatial confinement, the surface flow is substantially suppressed. Therefore, the surface tension gradient responsible for this phenomenon is maintained because the normal diffusion of film liquid into the droplet can timely dilute film liquid supplied by uphill Marangoni flow at the droplet surface. The present finding removes the conventional cognition that droplet coalescence is prompt on fully miscible continuous liquid surfaces, thus benefiting design of new types of microfluidic devices.

11.
Soft Matter ; 18(13): 2541-2548, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35166750

RESUMO

In an active bath, besides thermal noise, immersed passive objects also persistently experience collisions from active particles, which are often coarse-grained into a colored active noise with an assumed exponential time correlation. The exponentially correlated active noise extremely simplifies the theoretical description of immersed passive objects but so far lacks direct experimental verification. Here, we experimentally investigate the active noise subjected by a passive rotor confined in an active granular bath. On the basis of Langevin dynamics, we extract the characteristic of the active noise by analyzing the power spectrum of the rotor trajectory. Our experimental results find that the active noise experienced by the granular rotor does show an exponential time correlation to a good extent, even though due to the small experimental system and low collision frequency, the profile of the active noise in our system is non-Gaussian. Our findings give direct experimental evidence, which supports the widely-used active Ornstein-Uhlenbeck particle model in our dry active system.

12.
Soft Matter ; 18(22): 4265-4272, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609282

RESUMO

The active depletion torque experienced by two anisotropic objects in an active bath is a conceptional generalization of the equilibrium entropic torque. Using Brownian dynamics simulations, we compute the active depletion torque suffered by two passive rods immersed in an ensemble of active Brownian particles. Our results demonstrate that the active depletion torque is qualitatively different from its passive counterpart. Interestingly, we find that the active depletion torque can be greatly affected by the external constraint applied on the rotational degree of freedom of the rods, and even the direction may be changed with the orientational constraint, which is in contrast to the equilibrium depletion torque. The main reason for the remarkable features of the active depletion torque is that the active particles can significantly accumulate in the vicinity of the rods due to persistent self-propulsion, which is sensitively dependent on the constraint strength and the rod configurations. Our findings could be relevant for understanding the self-assembly and dynamics of anisotropic macromolecules in living environments.

13.
Soft Matter ; 18(29): 5459-5464, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35822840

RESUMO

Spontaneous collective oscillation may emerge from seemingly irregular active matter systems. Here, we experimentally demonstrate a spontaneous population oscillation of active granular particles confined in two chambers connected by a narrow channel, and verify the intriguing behavior predicted in simulation [M. Paoluzzi, R. Di Leonardo and L. Angelani, Self-sustained density oscillations of swimming bacteria confined in microchambers, Phys. Rev. Lett., 2015, 115(18), 188303]. During the oscillation, the two chambers are alternately (nearly) filled up and emptied by the self-propelled particles in a periodic manner. We show that the stable unidirectional flow induced due to the confined channel and its periodic reversal triggered by the particle concentration difference between two chambers jointly give rise to the oscillatory collective behavior. Furthermore, we propose a minimal theoretical model that properly reproduces the experimental results without free parameters. This self-sustained collective oscillation could serve as a robust active granular clock, capable of providing rhythmic signals.

14.
J Chem Phys ; 156(13): 134903, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395881

RESUMO

Living cells on a substrate with mechanical inhomogeneities often migrate along or against the mechanical gradient, i.e., mechanotaxis, which inspires us to ask how biomimetic cells without biochemical signaling processes respond to environmental inhomogeneity. Here, we perform computer simulations to study the migration of a 2D active colloidal cell (ACC), which consists of active particles enclosed by a passive vesicle, in a heterogeneous environment composed of two adjoining uniform regions with different attributes (influencing the persistent length of the active particle). We find that the ACC can migrate unidirectionally across the interface separating the heterogeneous region and behave tactically. Interestingly, the tactic motion of the ACC is qualitatively different from that of the constituent active particles themselves. In addition, the ACC may also experience a directed drift along the interface of the heterogeneous environment. The tactic behavior of the ACC can be explained by analyzing the pressure distribution on the cell membrane exerted by the enclosed active particles. The findings provide insights into understanding the taxis of biological cells and designing biomimetic cells with environment-sensitive capabilities.


Assuntos
Movimento (Física) , Simulação por Computador
15.
Angew Chem Int Ed Engl ; 61(10): e202116013, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981604

RESUMO

We report a direct experimental observation of the torque-driven active reorientation of glucose-fueled flasklike colloidal motors to a glucose gradient exhibiting a positive chemotaxis. These streamlined flasklike colloidal motors are prepared by combining a hydrothermal synthesis and a vacuum infusion and can be propelled by an enzymatic cascade reaction in the glucose fuel. Their flasklike architecture can be used to recognize their moving posture, and thus the dynamic glucose-gradient-induced alignment and orientation-dependent motility during positive chemotaxis can be examined experimentally. The chemotactic mechanism is that the enzymatic reactions inside lead to the glucose acid gradient and the glucose gradient which generate two phoretic torques at the bottom and the opening respectively, and thus continuously steer it to the glucose gradient. Such glucose-fueled flasklike colloidal motors resembling the chemotactic capability of living organisms hold considerable potential for engineering active delivery vehicles in response to specific chemical signals.


Assuntos
Quimiotaxia , Movimento (Física) , Torque , Coloides/química , Coloides/metabolismo , Glucose/química , Glucose/metabolismo
16.
Phys Rev Lett ; 126(19): 198001, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047594

RESUMO

The discovery of topological edge states that unidirectionally propagate along the boundary of system without backscattering has enabled the development of new design principles for material or information transport. Here, we show that the topological edge flow supported by the chiral active fluid composed of spinners can even robustly transport an immersed intruder with the aid of the spinner-mediated depletion interaction between the intruder and boundary. Importantly, the effective interaction significantly depends on the dissipationless odd viscosity of the chiral active fluid, which originates from the spinning-induced breaking of time-reversal and parity symmetries, rendering the transport controllable. Our findings propose a novel avenue for robust cargo transport and could open a range of new possibilities throughout biological and microfluidic systems.

17.
Macromol Rapid Commun ; 42(23): e2100499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34480782

RESUMO

Stimulus-responsive hydrogels are of great significance in soft robotics, wearable electronic devices, and sensors. Near-infrared (NIR) light is considered an ideal stimulus as it can trigger the response behavior remotely and precisely. In this work, a smart flexible stimuli-responsive hydrogel with excellent photothermal property and decent conductivity are prepared by incorporating MXene nanosheets into the physically cross-linked poly(N-isopropyl acrylamide) hydrogel matrix. Because of outstanding photothermal effect and dispersion of MXene, the composite hydrogel exhibits rapid photothermal responsiveness and excellent photothermal stability under the NIR irradiation. Furthermore, the anisotropic bilayer hydrogel actuator shows fast and controllable light-driven bending behavior, which can be used as a light-controlled soft manipulator. Meanwhile, the hydrogel sensor exhibits cycling stability and good durability in detecting various deformation and real-time human activities. Therefore, the present study involving the fabrication of MXene nanocomposite hydrogels for potential applications in remotely controlled actuator and wearable electronic device provides a new method for the development of photothermal responsive conductive hydrogels.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Nanogéis
18.
Angew Chem Int Ed Engl ; 60(30): 16674-16679, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33973328

RESUMO

We report robust control over the dynamic assembly, disassembly, and reconfiguration of light-activated molybdenum disulfide (MoS2 ) colloidal motor swarms with features not possible in equilibrium systems. A photochemical reaction produces chemical gradients across the MoS2 colloidal motors to drive them to move. Under illumination of a gradient light, these colloidal motors display a positive phototactic motion. Mesoscale simulations prove that the self-diffusiophoresis induced by the locally consumed oxygen gradient across MoS2 colloidal motors dominates the phototactic process. By programming the structured illumination, the collective migration and well-defined shapes of colloidal motor swarms can be externally regulated. The successful realization of programmable swarm transformation of colloidal motors like the emergent behaviors of living systems in nature provides a direct proof-of-concept for active soft materials and systems, with adaptive and interactive functions.

19.
Phys Rev Lett ; 124(15): 158001, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357018

RESUMO

Using simulations and experiments, we demonstrate that the effective interaction between passive particles in an active bath substantially depends on an external constraint suffered by the passive particles. Particularly, the effective interaction between two free passive particles, which is directly measured in simulation, is qualitatively different from the one between two fixed particles. Moreover, we find that the friction experienced by the passive particles-a kinematic constraint-similarly influences the effective interaction. These remarkable features are in significant contrast to the equilibrium cases, and mainly arise from the accumulation of the active particles near the concave gap formed by the passive spheres. This constraint dependence not only deepens our understanding of the "active depletion force," but also provides an additional tool to tune the effective interactions in an active bath.

20.
Soft Matter ; 16(19): 4655-4660, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32373861

RESUMO

We study the properties of active noise experienced by a passive particle harmonically trapped in an active bath. The active bath is either explicitly simulated by an ensemble of active Brownian particles or abstractly represented by an active colored noise in theory. Assuming the equivalence of the two descriptions of the active bath, the active noise in the simulation system, which is directly extracted by fitting theoretical predictions to simulation measurements, is shown to depend on the constraint suffered by the passive tracer. This scenario is in significant contrast to the case of thermal noise that is independent of external trap potentials. The constraint dependence of active noise arises from the fact that the persistent force on the passive particle from the active bath can be influenced by the particle relaxation dynamics. Moreover, due to the interplay between the active collisions and particle relaxation dynamics, the effective temperature of the passive tracer quantified as the ratio of fluctuation to dissipation increases as the constraint strengthens, while the average potential and kinetic energies of the passive particle both decrease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA